Global well-posedness and scattering for the defocusing Ḣ1∕2-critical nonlinear Schrödinger equation in ℝ2

Type: Article

Publication Date: 2021-11-10

Citations: 4

DOI: https://doi.org/10.2140/apde.2021.14.2225

Abstract

In this paper we consider the Cauchy initial value problem for the defocusing quintic nonlinear Schr\"odinger equation in $\mathbb{R}^2$ with general data in the critical space $\dot{H}^{\frac{1}{2}} (\mathbb{R}^2)$. We show that if a solution remains bounded in $\dot{H}^{\frac{1}{2}} (\mathbb{R}^2)$ in its maximal interval of existence, then the interval is infinite and the solution scatters.

Locations

  • Analysis & PDE - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Global well-posedness and scattering for the defocusing $\dot{H}^{\frac{1}{2}}$-critical nonlinear Schrödinger equation in $\mathbb{R}^2$ 2018 Xueying Yu
+ Global well-posedness and scattering for the defocusing mass-critical Schrödinger equation in the three-dimensional hyperbolic space 2023 Bobby L. Wilson
Xueying Yu
+ Global well-posedness and scattering of 3D defocusing, cubic Schrödinger equation 2020 Jia Shen
Yifei Wu
+ PDF Chat Global well-posedness for the defocusing 3D quadratic NLS in the sharp critical space 2024 Jia Shen
Yifei Wu
+ Global well-posedness and scattering for the defocusing, $L^{2}$-critical, nonlinear Schrödinger equation when $d = 1$ 2010 Benjamin Dodson
+ On the global well-posedness of the Calogero-Sutherland derivative nonlinear Schrödinger equation 2023 Rana Badreddine
+ Global Well-Posedness of the Energy-Critical Nonlinear Schrödinger Equation on $\mathbb{T}^4$ 2018 Haitian Yue
+ PDF Chat On the Global Well-Posedness for the Periodic Quintic Nonlinear Schrödinger Equation 2024 Xueying Yu
Haitian Yue
+ PDF Chat Local well-posedness for the $H^2$-critical nonlinear Schrödinger equation 2015 Thierry Cazenave
Daoyuan Fang
Zheng Han
+ Global well-posedness for a L2-critical nonlinear higher-order Schrödinger equation 2017 Van Duong Dinh
+ Local well-posedness for the $H^2$-critical nonlinear Schrödinger equation 2013 Thierry Cazenave
Daoyuan Fang
Han Zheng
+ Local well-posedness for the $H^2$-critical nonlinear Schr\"odinger equation 2013 Thierry Cazenave
Daoyuan Fang
Zheng Han
+ Large global solutions for energy-critical nonlinear Schrödinger equation 2021 Ruobing Bai
Jia Shen
Yifei Wu
+ Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equations of fourth order in dimensions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>d</mml:mi><mml:mo>⩾</mml:mo><mml:mn>9</mml:mn></mml:math> 2011 Changxing Miao
Guixiang Xu
Lifeng Zhao
+ PDF Chat Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS 2006 Pieter Blue
J. Colliander
+ Global existence for the defocusing Sobolev critical Schrödinger equation under the finite variance condition of initial data 2022 Vo Van Au
+ Global existence for the defocusing mass-critical nonlinear fourth-order Schrödinger equation below the energy space 2017 Van Duong Dinh
+ On scattering for the defocusing high dimensional inter-critical NLS 2018 Chuanwei Gao
Zehua Zhao
+ Global well-posedness for the defocusing, cubic nonlinear Schr{\"o}dinger equation with initial data in a critical space 2020 Benjamin Dodson
+ Small Data Global Existence and Scattering for the Mass-Critical Nonlinear Schrödinger Equation with Power Convolution in ℝ³ 2009 George Venkov