On Sums of Sixteen Biquadrates

Type: Article

Publication Date: 2005-01-01

Citations: 4

DOI: https://doi.org/10.24033/msmf.413

Abstract

By 1939 it was known that 13792 cannot be expressed as a sum of sixteen biquadrates (folklore), that there exist infinitely many natural numbers which cannot be written as sums of fifteen biquadrates (Kempner) and that every sufficiently large integer is a sum of sixteen biquadrates (Davenport).In this memoir it is shown that every integer larger than 10 216 and not divisible by 16 can be represented as a sum of sixteen biquadrates.Combined with a numerical study by Deshouillers, Hennecart and Landreau, this result implies that every integer larger than 13792 is a sum of sixteen biquadrates. Résumé (Sur les Sommes de Seize Bicarrés). -En 1939, on savait que 13792 ne peut pas être représenté comme somme de seize bicarrés (folklore), qu'il existe une infinité d'entiers qui ne peuvent pas être écrits comme sommes de quinze bicarrés (Kempner) et que tout entier assez grand est somme de seize bicarrés (Davenport).Dans ce mémoire, on montre que tout entier supérieur à 10 216 et non divisible par 16 peut s'exprimer comme somme de seize bicarrés.Combiné à une étude numérique menée par Deshouillers, Hennecart et Landreau, ce résultat implique que tout entier supérieur à 13792 est somme de seize bicarrés.

Locations

  • Mémoires de la Société mathématique de France - View - PDF
  • French digital mathematics library (Numdam) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View

Similar Works

Action Title Year Authors
+ On the sums of many biquadrates in two different ways 2017 Farzali Izadi
Mehdi Baghalagdam
+ On the sums of many biquadrates in two different ways 2017 Farzali Izadi
Mehdi Baghalagdam
+ On Sums of Sixteen Biquadrates (Mémoires de la Société Mathématique de France 100) 2005 JM Deshouillers
Kiyokazu Kawada
Trevor D. Wooley
+ Proof that Every Large Integer is a Sum of Seventeen Biquadrates 1936 T. Estermann
+ PDF Chat On sums of sixteen biquadrates. 2005 Jean-Marc Deshouillérs
Koichi Kawada
Trevor D. Wooley
+ PDF Chat Numerical results for sums of five and seven biquadrates and consequences for sums of 19 biquadrates 1993 Jean-Marc Deshouillérs
François Dress
+ Numerical Results for Sums of Five and Seven Biquadrates and Consequences for Sums of 19 Biquadrates 1993 J.-M. Deshouillers
F. Dress
+ Sums of Two, Four, Six and Eight Triangular Numbers 2010 Kenneth S. Williams
+ PDF Chat Sums of Sixteen and Twenty-Four Triangular Numbers 2005 James G. Huard
Kenneth S. Williams
+ Odd numbers 1901 C. C. B.
+ The Representation of Numbers as Sums of Eight, Sixteen and Twenty-Four Squares 1954 Balth. van der Pol
+ On Numbers Expressible as the Sum of Four Tetrahedral Numbers 1945 Herbert E. Salzer
+ 2939. On the representation of numbers as sums of triangular numbers 1961 U. V. Satyanarayana
+ Numerals 1903 Matilda Pollard
+ Sums of four biquadrates 2003 T. D. Browning
+ PDF Chat A note on the diophantine problem of finding four biquadrates whose sum is a biquadrate 1942 John Patterson
+ PDF Chat On the representation of numbers as sums of ten or twelve squares 1905 Karel Petr
+ Einleitung 1973 H. J. Wagner
+ Two pairs of biquadrates with equal sums 2023 Ajai Choudhry
+ More About Four Biquadrates Equal One Biquadrate 1973 Kermit Rose
Simcha Brudno