Four-loop contributions to long-distance quantities in the two-dimensional nonlinear sigma-model on a square lattice: revised numerical estimates

Type: Preprint

Publication Date: 1999-06-17

Citations: 10

Abstract

We give the correct analytic expression of a finite integral appearing in the four-loop computation of the renormalization-group functions for the two-dimensional nonlinear sigma-model on the square lattice with standard action, explaining the origin of a numerical discrepancy. We revise the numerical expressions of Caracciolo and Pelissetto for the perturbative corrections of the susceptibility and of the correlation length. For the values used in Monte Carlo simulations, N=3, 4, 8, the second perturbative correction coefficient of the correlation length varies by 3%, 4%, 3% respectively. Other quantities vary similarly.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Continuum limit of susceptibility from strong coupling expansion: Two dimensional non-linear O(N) sigma model at N>= 3 2012 Hirofumi Yamada
+ Continuum limit of susceptibility from strong coupling expansion: Two dimensional non-linear O(N) sigma model at N>= 3 2012 Hirofumi Yamada
+ PDF Chat Asymptotic safety on the lattice: The Nonlinear O(N) Sigma Model 2014 Björn Wellegehausen
Daniel Körner
Andreas Wipf
+ Analytical results for the four-loop RG functions in the 2D non-linear O(n) σ-model on the lattice 2013 Oleg L. Veretin
+ Renormalization group analysis of lattice theories and improved lattice action: Two-dimensional non-linear O(N) sigma model 1985 Y. Iwasaki
+ High loop renormalization constants by NSPT: a status report 2007 Francesco Di Renzo
L. Scorzato
C. Torrero
+ PDF Chat Correction to four-loop RG functions in the two-dimensional lattice 0(n) σ-model 1999 Dong‐shin Shin
+ PDF Chat Non-perturbative computation of the strong coupling constant on the lattice 2015 Rainer Sommer
Ulli Wolff
+ Analytical results for the four-loop RG functions in the 2D non-linear O(n) σ-model on the lattice 2013 O.L. Veretin
+ PDF Chat Comparison between theoretical four-loop predictions and Monte Carlo calculations in the two-dimensional N-vector model for N = 3, 4, 8 1996 Sergio Caracciolo
Robert G. Edwards
Tereza Mendes
Andrea Pelissetto
Alan D. Sokal
+ PDF Chat Two-dimensional nonlinear σ model on a random lattice 1995 B. Allés
Matteo Beccaria
+ PDF Chat Taming NSPT fluctuations in $O(N)$ Non-Linear Sigma Model: simulations in the large $N$ regime 2024 Paolo Baglioni
Francesco Di Renzo
+ Non-perturbative study of QCD correlators 2006 A. Y. Lokhov
+ Convergent series for lattice models with polynomial interactions 2016 Aleksandr Ivanov
Vasily Sazonov
+ PDF Chat Critical Two-Point Function for Long-Range O(n) Models Below the Upper Critical Dimension 2017 Martin Lohmann
Gordon Slade
Benjamin C. Wallace
+ PDF Chat Operator product expansion on the lattice: a numerical test in the two-dimensional non-linear sigma-model 2000 Sergio Caracciolo
Andrea Montanari
Andrea Pelissetto
+ PDF Chat Nonperturbative evaluation for anomalous dimension in 2-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> sigma model 2018 S. Jiménez
M. Oka
Kiyoshi Sasaki
+ Nonlinear Sigma Model for Disordered Media: Replica Trick for Non-Perturbative Results and Interactions 2002 Igor V. Lerner
+ PDF Chat Non-perturbative renormalization-group approach to lattice models 2008 N. Dupuis
K. Sengupta
+ PDF Chat Large fluctuations in NSPT computations: a lesson from $O(N)$ non-linear sigma models 2024 Piero Baglioni
Francesco Di Renzo

Works Cited by This (0)

Action Title Year Authors