Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Solvability of the Diophantine equations xp + 22m y4 = pk z2 and xp + y2 = pk z4
Cao
,
Zhenfu
Type:
Article
Publication Date:
2002-01-01
Citations:
0
View Publication
Share
Locations
哈尔滨工业大学学报:英文版 -
View
Similar Works
Action
Title
Year
Authors
+
Solvability of the Diophantine equations x~p+2~(2m)y~4=p~kz~2 and x~p+y~2=p~kz~4
2002
Cao Zhen
+
On the Diophantine Equation p^x+(p+1)^y=z^2, where p is Prime
2024
Chantana Wannaphan
Suton Tadee
+
PDF
Chat
On the Diophantine Equation (p + 4n)^ x + p^y = z^2
2022
Wachirarak Orosram
Kitsanuphong Makonwattana
Saichon Khongsawat
+
Solutions of the Diophantine Equations p x + (p + 1)y + (p + 2)z = M 2 for Primes p ≥ 2 when 1 ≤ x, y, z ≤ 2
2020
Nechemia Burshtein
+
PDF
Chat
Nonexistence of Positive Integer Solutions of the Diophantine Equation p^x + (p + 2q)^ y = z^2 , where p, q and p + 2q are Prime Numbers
2023
Suton Tadee
Apirat Siraworakun
+
On the Diophantine Equation (p+12)x+(p+2k)y=z2 where p is a Prime Number
2021
Vipawadee Moonchaisook
Watakarn Moonchaisook
Khattiya Moonchaisook
+
On the diophantine equation px+5y=z2
2016
I-lada Cheenchan
+
Solutions of the Diophantine Equation 2x + py = z2 When p is Prime
2018
Nechemia Burshtein
+
On Diophantine Equation px~4-(p-1)y~2=z~4
2012
Xiong Li-hua
+
On the Diophantine equation $(p^n)^x+(4^mp+1)^y=z^2$ when $p, 4^mp+1$ are prime numbers
2024
Phạm Hồng Nam
+
PDF
Chat
On the Solutions of the Diophantine Equation $p^x +(p+4k)^y=z^2$ for Prime Pairs $p$ and $p+4k$
2021
Renz Jimwel S. Mina
Jerico B. Bacani
+
On the Diophantine Equation y~2=px(x~2+2)
2009
Xiaoying Wang
+
Note on diophantine equation y~2=px(x~2+2)
2011
Guan Xun-gui
+
On the Diophantine Equation {(q^2 )^n }^x+p^y= z^2 where q is any Prime Number and p is an Odd Prime Number
2018
Surya Prakash Gautam
H. Kishan
Satish Kumar
+
On the Diophantine equation x1a+x2a+⋯+xma=pkyb
2019
Abdulrahman Balfaqih
Hailiza Kamarulhaili
+
关于不定方程y(y+1)(y+2)(y+3)=4p(上标 2k)x(x+1)(x+2)(x+3)
2011
管训贵
+
On the Solvability of the Diophantine Equation p^x+(p+8)^y=z^2 when p>3 and p+8 are Primes
2018
Fernando Neres de Oliveira
+
On the Diophantine Equation (4^n)^x − P^y = Z^2
2020
Amr Elshahed
Hailiza Kamarulhaili
+
Solutions of the Diophantine Equation X2+py2=z2
2017
Piyanut Puangjumpa
+
All the Solutions of the Diophantine Equations (p + 1) x – py = z2 andpy - (p + 1) x = z2 when p is Prime and x + y = 2, 3, 4
2019
Nechemia Burshtein
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (0)
Action
Title
Year
Authors