Hexagonalization of Fishnet integrals. Part I. Mirror excitations

Type: Article

Publication Date: 2021-11-01

Citations: 7

DOI: https://doi.org/10.1007/jhep11(2021)204

Abstract

A bstract In this paper we consider a conformal invariant chain of L sites in the unitary irreducible representations of the group SO(1 , 5). The k -th site of the chain is defined by a scaling dimension ∆ k and spin numbers $$ \frac{\ell_k}{2},\frac{\ell_k}{2} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfrac> <mml:msub> <mml:mi>ℓ</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>,</mml:mo> <mml:mfrac> <mml:msub> <mml:mi>ℓ</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mn>2</mml:mn> </mml:mfrac> </mml:math> The model with open and fixed boundaries is shown to be integrable at the quantum level and its spectrum and eigenfunctions are obtained by separation of variables. The transfer matrices of the chain are graph-builder operators for the spinning and inhomogeneous generalization of squared-lattice “fishnet” integrals on the disk. As such, their eigenfunctions are used to diagonalize the mirror channel of the Feynman diagrams of Fishnet conformal field theories. The separated variables are interpreted as momentum and bound-state index of the mirror excitations of the lattice: particles with SO(4) internal symmetry that scatter according to an integrable factorized $$ \mathcal{S} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>S</mml:mi> </mml:math> -matrix in (1 + 1) dimensions

Locations

  • Journal of High Energy Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Hexagonalization of Fishnet integrals I: mirror excitations 2021 Enrico Olivucci
+ Hexagonalization of Fishnet integrals II: overlaps and multi-point correlators 2023 Enrico Olivucci
+ Mirror channel eigenvectors of the $d$-dimensional fishnets 2021 S. É. Derkachov
Gwenaël Ferrando
Enrico Olivucci
+ PDF Chat Mirror channel eigenvectors of the d-dimensional fishnets 2021 S. É. Derkachov
Gwenaël Ferrando
Enrico Olivucci
+ PDF Chat Conformal quantum mechanics &amp; the integrable spinning Fishnet 2021 S. É. Derkachov
Enrico Olivucci
+ PDF Chat Integrability of conformal fishnet theory 2018 Nikolay Gromov
Vladimir Kazakov
G.P. Korchemsky
Stefano Negro
Grigory Sizov
+ PDF Chat Exactly Solvable Magnet of Conformal Spins in Four Dimensions 2020 S. É. Derkachov
Enrico Olivucci
+ Conformal quantum mechanics & the integrable spinning Fishnet 2021 S. É. Derkachov
Enrico Olivucci
+ PDF Chat The loom for general fishnet CFTs 2023 Vladimir Kazakov
Enrico Olivucci
+ The Loom for General Fishnet CFTs 2022 Vladimir Kazakov
Enrico Olivucci
+ PDF Chat Rational $Q$-systems, Higgsing and mirror symmetry 2023 Jie Gu
Yunfeng Jiang
Marcus Sperling
+ PDF Chat Spectrum of the Hypereclectic Spin Chain and P\'olya Counting 2022 Changrim Ahn
Matthias Staudacher
+ $U_{\mathfrak{q}}(\mathfrak{sl}_3)$ web models: Locality, phase diagram and geometrical defects 2021 Augustin Lafay
Azat M. Gainutdinov
Jesper Lykke Jacobsen
+ PDF Chat The SAGEX review on scattering amplitudes Chapter 9: Integrability of amplitudes in fishnet theories 2022 Dmitry Chicherin
G.P. Korchemsky
+ PDF Chat Geometry from Integrability: Multi-Leg Fishnet Integrals in Two Dimensions 2024 Claude Duhr
Albrecht Klemm
Florian Loebbert
Christoph Nega
Franziska Porkert
+ Corner transfer matrices and Lorentz invariance on a lattice 1986 H. B. Thacker
+ Spectrum of the hypereclectic spin chain and Pólya counting 2022 Changrim Ahn
Matthias Staudacher
+ PDF Chat Onsager symmetries in $U(1)$ -invariant clock models 2019 Éric Vernier
Edward E. O’Brien
Paul Fendley
+ PDF Chat Non-Landau quantum phase transition in modulated SU( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> ) Heisenberg spin chains 2025 Sylvain Capponi
Lukas Devos
P. Lecheminant
Keisuke Totsuka
Laurens Vanderstraeten
+ PDF Chat Hexagons and correlators in the fishnet theory 2019 Benjamin Basso
João Caetano
Thiago Fleury