Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Towards Denotational Semantics of AD for Higher-Order, Recursive, Probabilistic Languages
Alexander K. Lew
,
Mathieu Huot
,
Vikash K. Mansinghka
Type:
Preprint
Publication Date:
2021-11-30
Citations:
0
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
PDF
Chat
Towards Denotational Semantics of AD for Higher-Order, Recursive, Probabilistic Languages
2021
Alexander K. Lew
Mathieu Huot
Vikash K. Mansinghka
+
Towards Denotational Semantics of AD for Higher-Order, Recursive, Probabilistic Languages
2021
Alexander K. Lew
Mathieu Huot
Vikash K. Mansinghka
+
$ω$PAP Spaces: Reasoning Denotationally About Higher-Order, Recursive Probabilistic and Differentiable Programs
2023
Mathieu Huot
Alexander K. Lew
Vikash K. Mansinghka
Sam Staton
+
PDF
Chat
ADEV: Sound Automatic Differentiation of Expected Values of Probabilistic Programs
2023
Alexander K. Lew
Mathieu Huot
Sam Staton
Vikash K. Mansinghka
+
PDF
Chat
The Elements of Differentiable Programming
2024
Mathieu Blondel
Vincent Roulet
+
PDF
Chat
Automatic differentiation in PCF
2021
Damiano Mazza
Michele Pagani
+
PDF
Chat
A simple differentiable programming language
2019
Martı́n Abadi
Gordon Plotkin
+
Automatic Differentiation of Programs with Discrete Randomness
2022
Gaurav Arya
Moritz Schauer
Frank Schäfer
Christopher Rackauckas
+
PDF
Chat
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
2023
Wonyeol Lee
Xavier Rival
Hongseok Yang
+
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
2022
Wonyeol Lee
Xavier Rival
Hongseok Yang
+
PDF
Chat
𝜆ₛ: computable semantics for differentiable programming with higher-order functions and datatypes
2021
Benjamin Sherman
Jesse Michel
Michael Carbin
+
The simple essence of automatic differentiation (Differentiable functional programming made easy).
2018
Conal Elliott
+
PDF
Chat
Automatic Differentiation in Prolog
2023
Tom Schrijvers
Birthe van den Berg
Fabrizio Riguzzi
+
PDF
Chat
Smoothing Methods for Automatic Differentiation Across Conditional Branches
2023
Justin N. Kreikemeyer
Philipp Andelfinger
+
Smoothing Methods for Automatic Differentiation Across Conditional Branches
2023
Justin N. Kreikemeyer
Philipp Andelfinger
+
Distribution Theoretic Semantics for Non-Smooth Differentiable Programming
2022
Pedro H. Azevedo de Amorim
Christopher Wai‐Kei Lam
+
Automatic Differentiation in Prolog
2023
Tom Schrijvers
Birthe van den Berg
Fabrizio Riguzzi
+
Higher Order Automatic Differentiation of Higher Order Functions
2021
Mathieu Huot
Sam Staton
Matthijs Vákár
+
PDF
Chat
Higher Order Automatic Differentiation of Higher Order Functions
2022
Mathieu Huot
Sam Staton
Matthijs Vákár
+
The simple essence of automatic differentiation
2018
Conal Elliott
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (9)
Action
Title
Year
Authors
+
PDF
Chat
A domain theory for statistical probabilistic programming
2019
Matthijs Vákár
Ohad Kammar
Sam Staton
+
Church: a language for generative models
2012
Noah D. Goodman
Vikash K. Mansinghka
Daniel M. Roy
Keith Bonawitz
Joshua B. Tenenbaum
+
Pyro: Deep Universal Probabilistic Programming
2018
Eli Bingham
Jonathan P. Chen
Martin Jankowiak
Fritz Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul Szerlip
Paul Horsfall
Noah D. Goodman
+
PDF
Chat
A simple differentiable programming language
2019
Martı́n Abadi
Gordon Plotkin
+
Correctness of Automatic Differentiation via Diffeologies and Categorical Gluing
2020
Mathieu Huot
Sam Staton
Matthijs Vákár
+
Denotational Correctness of Foward-Mode Automatic Differentiation for Iteration and Recursion
2020
Matthijs Vákár
+
Automating Involutive MCMC using Probabilistic and Differentiable Programming
2020
Marco Cusumano-Towner
Alexander K. Lew
Vikash K. Mansinghka
+
PDF
Chat
Automatic differentiation in PCF
2021
Damiano Mazza
Michele Pagani
+
PDF
Chat
Densities of Almost Surely Terminating Probabilistic Programs are Differentiable Almost Everywhere
2021
Carol Mak
C.-H. Luke Ong
Hugo Paquet
Dominik Wagner