Incompressibility of Classical Distributions

Type: Article

Publication Date: 2021-11-23

Citations: 2

DOI: https://doi.org/10.1109/tit.2021.3130131

Abstract

In <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">blind</i> compression of quantum states, a sender Alice is given a specimen of a quantum state <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\rho $ </tex-math></inline-formula> drawn from a known ensemble (but without knowing what <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\rho $ </tex-math></inline-formula> is), and she transmits sufficient quantum data to a receiver Bob so that he can decode a near perfect specimen of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\rho $ </tex-math></inline-formula> . For many such states drawn iid from the ensemble, the asymptotically achievable rate is the number of qubits required to be transmitted per state. The Holevo information is a lower bound for the achievable rate, and is attained for pure state ensembles, or in the related scenario of entanglement-assisted <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">visible</i> compression of mixed states wherein Alice knows what state is drawn. In this paper, we prove a general and robust lower bound on the achievable rate for ensembles of classical states, which holds even in the least demanding setting when Alice and Bob share free entanglement and a constant per-copy error is allowed. We apply the bound to a <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">specific</i> ensemble of only two states and prove a near-maximal separation (saturating the dimension bound in leading order) between the best achievable rate and the Holevo information for constant error. This also implies that the ensemble is incompressible – compression does not reduce the communication cost by much. Since the states are <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">classical</i> , the observed incompressibility is not fundamentally quantum mechanical. We lower bound the difference between the achievable rate and the Holevo information in terms of quantitative limitations to clone the specimen or to distinguish the two classical states.

Locations

  • arXiv (Cornell University) - View - PDF
  • IEEE Transactions on Information Theory - View

Similar Works

Action Title Year Authors
+ Incompressibility of classical distributions 2019 Anurag Anshu
Debbie Leung
Dave Touchette
+ Incompressibility of classical distributions 2019 Anurag Anshu
Debbie Leung
Dave Touchette
+ PDF Chat Limits for compression of quantum information carried by ensembles of mixed states 1998 Michał Horodecki
+ PDF Chat General Mixed-State Quantum Data Compression With and Without Entanglement Assistance 2022 Zahra Baghali Khanian
Andreas Winter
+ Quantum Shannon Theory 2016 John Preskill
+ PDF Chat Quantum Information is Incompressible Without Errors 2002 Masato Koashi
Nobuyuki Imoto
+ PDF Chat Entanglement-Assisted Quantum Data Compression 2019 Zahra Baghali Khanian
Andreas Winter
+ Strong Converse Bounds for Compression of Mixed States 2022 Zahra Baghali Khanian
+ PDF Chat On quantum coding for ensembles of mixed states 2001 Howard Barnum
Carlton M. Caves
Christopher A. Fuchs
Richard Jozsa
Benjamin Schumacher
+ PDF Chat Fully Undistillable Quantum States Are Separable 2023 Satvik Singh
Nilanjana Datta
+ PDF Chat Compressibility of Quantum Mixed-State Signals 2001 Masato Koashi
Nobuyuki Imoto
+ Multi-Party Quantum Purity Distillation with Bounded Classical Communication 2022 Touheed Anwar Atif
S. Sandeep Pradhan
+ Simulability of high-dimensional quantum measurements 2022 Marie Ioannou
Pavel Sekatski
Sébastien Designolle
B. J. P. Jones
Roope Uola
Nicolas Brunner
+ Optimal Compression for Ensembles of Identically Prepared Mixed States 2015 Yuxiang Yang
Daniel Ebler
Giulio Chiribella
+ Rate-Distortion Theory for Mixed States 2022 Zahra Baghali Khanian
Kohdai Kuroiwa
Debbie Leung
+ Probing the quantum–classical boundary with compression software 2016 Hou Shun Poh
Marcin Markiewicz
Paweł Kurzyński
Alessandro Ceré
Dagomir Kaszlikowski
Christian Kurtsiefer
+ Mixed state dense coding and its relation to entanglement measures 1998 Sougato Bose
Martin B. Plenio
Vlatko Vedral
+ From Quantum Source Compression to Quantum Thermodynamics 2020 Zahra Baghali Khanian
+ PDF Chat Rate-Distortion Theory for Mixed States 2023 Zahra Baghali Khanian
Kohdai Kuroiwa
Debbie Leung
+ PDF Chat Upper Bounds on the Distillable Randomness of Bipartite Quantum States 2023 Ludovico Lami
Bartosz Regula
Xin Wang
Mark M. Wilde