The Benefits of Diversity: Permutation Recovery in Unlabeled Sensing From Multiple Measurement Vectors

Type: Article

Publication Date: 2021-11-09

Citations: 5

DOI: https://doi.org/10.1109/tit.2021.3127072

Abstract

In "Unlabeled Sensing", one observes a set of linear measurements of an underlying signal with incomplete or missing information about their ordering, which can be modeled in terms of an unknown permutation. Previous work on the case of a single noisy measurement vector has exposed two main challenges: 1) a high requirement concerning the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">signal-to-noise ratio</i> ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathsf {\mathbf {snr}}$ </tex-math></inline-formula> ), i.e., approximately of the order of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n^{5}$ </tex-math></inline-formula> , and 2) a massive computational burden in light of NP-hardness in general. In this paper, we study the case of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">multiple</i> noisy measurement vectors (MMVs) resulting from a <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">common</i> permutation and investigate to what extent the number of MMVs <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> facilitates permutation recovery by "borrowing strength". The above two challenges have at least partially been resolved within our work. First, we show that a large stable rank of the signal significantly reduces the required snr which can drop from a polynomial in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m = 1$ </tex-math></inline-formula> to a constant for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m = \Omega (\log n)$ </tex-math></inline-formula> , where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> denotes the number of MMVs and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> denotes the number of measurements per MV. This bound is shown to be sharp and is associated with a phase transition phenomenon. Second, we propose computational methods for recovering the unknown permutation. For the "oracle case" with known signal, the maximum likelihood (ML) estimator reduces to a linear assignment problem whose global optimum can be obtained efficiently. If both the signal and the permutation are unknown, the problem becomes a quadratic assignment problem; while such a problem is generally NP-hard and hence poses a significant challenge, we propose to tackle it via projected gradient descent with a non-convex constraint set, and establish a monotonic descent property of this scheme. Numerical experiments based on the proposed computational approach confirm the tightness of our theoretical analysis.

Locations

  • arXiv (Cornell University) - View - PDF
  • IEEE Transactions on Information Theory - View

Similar Works

Action Title Year Authors
+ The Benefits of Diversity: Permutation Recovery in Unlabeled Sensing from Multiple Measurement Vectors 2019 Hang Zhang
Martin Slawski
Li Ping
+ Permutation Recovery from Multiple Measurement Vectors in Unlabeled Sensing 2019 Hang Zhang
Martin Slawski
Ping Li
+ PDF Chat Sparse Recovery with Shuffled Labels: Statistical Limits and Practical Estimators 2021 Hang Zhang
Ping Li
+ Unlabelled Sensing: A Sparse Bayesian Learning Approach 2018 Ranjitha Prasad
+ Unlabelled Sensing: A Sparse Bayesian Learning Approach. 2018 Ranjitha Prasad
+ Unlabeled Sensing With Local Permutations 2019 Ahmed Ali Abbasi
Shoaib Bin Masud
Boyang Lyu
Shuchin Aeron
+ PDF Chat R-Local Unlabeled Sensing: A Novel Graph Matching Approach for Multiview Unlabeled Sensing Under Local Permutations 2021 Ahmed Ali Abbasi
Abiy Tasissa
Shuchin Aeron
+ Permutations Unlabeled Beyond Sampling Unknown 2019 Ivan Dokmanić
+ Recovering Data Permutations from Noisy Observations: The Linear Regime 2020 Minoh Jeong
Alex Dytso
Martina Cardone
H. Vincent Poor
+ Recovering Data Permutations From Noisy Observations: The Linear Regime 2020 Minoh Jeong
Alex Dytso
Martina Cardone
H. Vincent Poor
+ PDF Chat Multiple Support Recovery Using Very Few Measurements Per Sample 2022 Lekshmi Ramesh
Chandra R. Murthy
Himanshu Tyagi
+ Sparse Recovery with Shuffled Labels: Statistical Limits and Practical Estimators 2023 Hang Zhang
Ping Li
+ Universality in Learning from Linear Measurements 2019 Ehsan Abbasi
Fariborz Salehi
Babak Hassibi
+ Recovering Data Permutation from Noisy Observations: The Linear Regime 2020 Minoh Jeong
Alex Dytso
Martina Cardone
H. Vincent Poor
+ PDF Chat On the Parallel Reconstruction from Pooled Data 2022 Oliver Gebhard
Max Hahn‐Klimroth
Dominik Kaaser
Philipp Loick
+ PDF Chat Linear regression with an unknown permutation: Statistical and computational limits 2016 Ashwin Pananjady
Martin J. Wainwright
Thomas A. Courtade
+ On the Parallel Reconstruction from Pooled Data 2019 Oliver Gebhard
Max Hahn‐Klimroth
Dominik Kaaser
Philipp Loick
+ Linear Regression with an Unknown Permutation: Statistical and Computational Limits 2016 Ashwin Pananjady
Martin J. Wainwright
Thomas A. Courtade
+ Linear Regression with an Unknown Permutation: Statistical and Computational Limits 2016 Ashwin Pananjady
Martin J. Wainwright
Thomas A. Courtade
+ PDF Chat Information Recovery From Pairwise Measurements 2016 Yuxin Chen
Changho Suh
Andrea Goldsmith