On the Hardy–Littlewood–Chowla conjecture on average

Type: Article

Publication Date: 2022-01-01

Citations: 3

DOI: https://doi.org/10.1017/fms.2022.54

Abstract

Abstract There has been recent interest in a hybrid form of the celebrated conjectures of Hardy–Littlewood and of Chowla. We prove that for any $k,\ell \ge 1$ and distinct integers $h_2,\ldots ,h_k,a_1,\ldots ,a_\ell $ , we have: $$ \begin{align*}\sum_{n\leq X}\mu(n+h_1)\cdots \mu(n+h_k)\Lambda(n+a_1)\cdots\Lambda(n+a_{\ell})=o(X)\end{align*} $$ for all except $o(H)$ values of $h_1\leq H$ , so long as $H\geq (\log X)^{\ell +\varepsilon }$ . This improves on the range $H\ge (\log X)^{\psi (X)}$ , $\psi (X)\to \infty $ , obtained in previous work of the first author. Our results also generalise from the Möbius function $\mu $ to arbitrary (non-pretentious) multiplicative functions.

Locations

  • Forum of Mathematics Sigma - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat On the Hardy-Littlewood-Chowla conjecture on average 2021 Jared Duker Lichtman
Joni Teräväinen
+ PDF Chat On the Hardy–Littlewood majorant problem 2004 Ben Green
Imre Z. Ruzsa
+ An application of the Hardy–Littlewood conjecture 2016 JinHua Fei
+ PDF Chat Supplementary Data and Remarks Concerning a Hardy-Littlewood Conjecture 1963 Daniel Shanks
+ The Hardy-Littlewood conjecture. An algebraic approach 1996 А. И. Виноградов
+ PDF Chat The Hardy–Littlewood–Chowla conjecture in the presence of a Siegel zero 2022 Terence Tao
Joni Teräväinen
+ Some Results on a Conjecture of Hardy and Littlewood 2019 Christian Axler
+ Some Results on a Conjecture of Hardy and Littlewood 2019 Christian Axler
+ PDF Chat A variant of the Hardy-Ramanujan theorem 2022 M. Ram Murty
V. Kumar Murty
+ The Hardy--Littlewood--Chowla conjecture in the presence of a Siegel zero 2021 Terence Tao
Joni Teräväinen
+ Averaged Form of the Hardy-Littlewood Conjecture 2016 Jori Merikoski
+ PDF Chat Hardy–Littlewood Tuple Conjecture Over Large Finite Fields 2012 Lior Bary‐Soroker
+ Consecutive primes and Beatty sequences 2016 William D. Banks
Victor Zhenyu Guo
+ Consecutive primes and Beatty sequences 2016 William D. Banks
Victor Zhenyu Guo
+ Second Hardy-Littlewood Conjecture 2007
+ Hardy-Littlewood Constants 2003 Keith Conrad
+ The second Hardy-Littlewood conjecture is true 2021 Matt Visser
+ Multiplicative functions in short intervals II 2020 Kaisa Matomäki
Maksym Radziwiłł
+ The Littlewood conjecture 2015 D. Choimet
Hervé Queffélec
+ An improvement of the lower bound of the number of integers in Littlewood's conjecture 2024 Shunsuke Usuki