Chiral coordinate Bethe ansatz for phantom eigenstates in the open XXZ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>spin</mml:mi><mml:mtext>−</mml:mtext><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> chain

Type: Article

Publication Date: 2021-11-08

Citations: 13

DOI: https://doi.org/10.1103/physrevb.104.195409

Abstract

We construct the coordinate Bethe ansatz for all eigenstates of the open $\mathrm{spin}\text{\ensuremath{-}}\frac{1}{2}$ XXZ chain that fulfill the phantom roots criterion (PRC). Under the PRC, the Hilbert space splits into two invariant subspaces and there are two sets of homogeneous Bethe ansatz equations (BAE) to characterize the subspaces in each case. We propose two sets of vectors with chiral shocks to span the invariant subspaces and expand the corresponding eigenstates. All the vectors are factorized and have symmetrical and simple structures. Using several simple cases as examples, we present the core elements of our generalized coordinate Bethe ansatz method. The eigenstates are expanded in our generating set and show clear chirality and certain symmetry properties. The bulk scattering matrices, the reflection matrices on the two boundaries and the BAE are obtained, which demonstrates the agreement with other approaches. Some hypotheses are formulated for the generalization of our approach.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Chiral coordinate Bethe ansatz for phantom eigenstates in the open XXZ spin-$\frac12$ chain 2021 Xin Zhang
Andreas Kluemper
Vladislav Popkov
+ PDF Chat Phantom Bethe roots in the integrable open spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> XXZ chain 2021 Xin Zhang
Andreas Klümper
Vladislav Popkov
+ Bethe states of the XXZ spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math>chain with arbitrary boundary fields 2015 Xin Zhang
Yuanyuan Li
Jun Cao
Wen‐Li Yang
Kangjie Shi
Yupeng Wang
+ PDF Chat Wave functions and scalar products in the Bethe ansatz 2019 B. Vallet
+ Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity 2016 Azat M. Gainutdinov
Rafael I. Nepomechie
+ PDF Chat Matrix coordinate Bethe Ansatz: applications to XXZ and ASEP models 2011 Nicolas Crampé
E. Ragoucy
Damien Simon
+ Bethe Ansatz Techniques and the AdS/CFT Correspondence 2011 Johnson Leow
+ Retrieve the Bethe states of quantum integrable models solved via off-diagonal Bethe Ansatz 2014 Xin Zhang
Yuanyuan Li
Jun Cao
Wen‐Li Yang
Kangjie Shi
Yupeng Wang
+ PDF Chat Report on 2303.07640v2 2023 Jue Hou
Yunfeng Jiang
Rui-Dong Zhu
+ PDF Chat Report on 2303.07640v2 2023 Jue Hou
Yunfeng Jiang
Rui-Dong Zhu
+ PDF Chat Report on 2303.07640v3 2024 Jue Hou
Yunfeng Jiang
Rui-Dong Zhu
+ PDF Chat Retrieve the Bethe states of quantum integrable models solved via the off-diagonal Bethe Ansatz 2015 Xin Zhang
Yuanyuan Li
Jun Cao
Wen‐Li Yang
Kangjie Shi
Yupeng Wang
+ PDF Chat Phantom Bethe excitations and spin helix eigenstates in integrable periodic and open spin chains 2021 Vladislav Popkov
Xin Zhang
Andreas Klümper
+ PDF Chat Bethe Ansatz, Quantum Circuits, and the F-basis 2024 Roberto Ruiz
Alejandro Sopena
Esperanza López
Germán Sierra
Balázs Pozsgay
+ PDF Chat Bethe Ansatz for the Open XXZ Chain from Functional Relations at Roots of Unity 2006 Rafael I. Nepomechie
+ Coordinate Bethe Ansatz 2004
+ PDF Chat Scalar products of Bethe vectors in the generalized algebraic Bethe ansatz 2023 G. Kulkarni
N. A. Slavnov
+ On correlation functions in the coordinate and the algebraic Bethe ansatz 2014 Rafael Hernández
Juan Miguel Nieto García
+ Pedestrian's way to Baxter's Bethe ansatz for the periodic XYZ chain 2024 Xin Zhang
Andreas Klümper
Vladislav Popkov
+ A Pedestrian's Way to Baxter's Bethe Ansatz for the Periodic XYZ Chain 2023 Xin Zhang
Andreas Klümper
Vladislav Popkov

Works That Cite This (13)

Action Title Year Authors
+ PDF Chat Invariant subspaces and elliptic spin-helix states in the integrable open spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac><mml:mo> </mml:mo><mml:mi>XYZ</mml:mi></mml:math> chain 2022 Xin Zhang
Andreas Klümper
Vladislav Popkov
+ PDF Chat Unveiling chiral states in the XXZ chain: finite-size scaling probing symmetry-enriched c = 1 conformal field theories 2024 Chenan Wei
V. V. Mkhitaryan
Tigran Sedrakyan
+ PDF Chat Chiral Basis for Qubits and Spin-Helix Decay 2024 Vladislav Popkov
Xin Zhang
Frank Göhmann
Andreas Klümper
+ Pedestrian's way to Baxter's Bethe ansatz for the periodic XYZ chain 2024 Xin Zhang
Andreas Klümper
Vladislav Popkov
+ A Pedestrian's Way to Baxter's Bethe Ansatz for the Periodic XYZ Chain 2023 Xin Zhang
Andreas Klümper
Vladislav Popkov
+ Boundary driven $XYZ$ chain: Exact inhomogeneous triangular matrix product ansatz 2021 Vladislav Popkov
Xin Zhang
Tomaž Prosen
+ PDF Chat Boundary-driven XYZ chain: Inhomogeneous triangular matrix product ansatz 2022 Vladislav Popkov
Xin Zhang
Tomaž Prosen
+ Hydrodynamic relaxation of spin helices 2022 Guillaume Cecile
Sarang Gopalakrishnan
Romain Vasseur
Jacopo De Nardis
+ Hydrodynamic relaxation of spin helices 2023 Guillaume Cecile
Sarang Gopalakrishnan
Romain Vasseur
Jacopo De Nardis
+ Unveiling chiral phases: Finite-size scaling as a probe of quantum phase transition in symmetry-enriched $c=1$ conformal field theories 2023 Chenan Wei
V. V. Mkhitaryan
Tigran Sedrakyan