Single-Sample Prophet Inequalities via Greedy-Ordered Selection

Type: Book-Chapter
Publication Date: 2022-01-01
Citations: 7
DOI: https://doi.org/10.1137/1.9781611977073.54

Abstract

Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Single-Sample Prophet Inequalities via Greedy-Ordered SelectionConstantine Caramanis, Paul Dütting, Matthew Faw, Federico Fusco, Philip Lazos, Stefano Leonardi, Orestis Papadigenopoulos, Emmanouil Pountourakis, and Rebecca ReiffenhäuserConstantine Caramanis, Paul Dütting, Matthew Faw, Federico Fusco, Philip Lazos, Stefano Leonardi, Orestis Papadigenopoulos, Emmanouil Pountourakis, and Rebecca Reiffenhäuserpp.1298 - 1325Chapter DOI:https://doi.org/10.1137/1.9781611977073.54PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract We study single-sample prophet inequalities (SSPIs), i.e., prophet inequalities where only a single sample from each prior distribution is available. Besides a direct, and optimal, SSPI for the basic single choice problem [Rubinstein et al., 2020], most existing SSPI results were obtained via an elegant, but inherently lossy reduction to order-oblivious secretary (OOS) policies [Azar et al., 2014]. Motivated by this discrepancy, we develop an intuitive and versatile greedy-based technique that yields SSPIs directly rather than through the reduction to OOSs. Our results can be seen as generalizing and unifying a number of existing results in the area of prophet and secretary problems. Our algorithms significantly improve on the competitive guarantees for a number of interesting scenarios (including general matching with edge arrivals, bipartite matching with vertex arrivals, and certain matroids), and capture new settings (such as budget additive combinatorial auctions). Complementing our algorithmic results, we also consider mechanism design variants. Finally, we analyze the power and limitations of different SSPI approaches by providing a partial converse to the reduction from SSPI to OOS given by Azar et al. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-707-3 https://doi.org/10.1137/1.9781611977073Book Series Name:ProceedingsBook Code:PRDA22Book Pages:xvii + 3771

Locations

  • arXiv (Cornell University)
  • Society for Industrial and Applied Mathematics eBooks
  • IRIS Research product catalog (Sapienza University of Rome)

Ask a Question About This Paper

Summary

Login to see paper summary

We study single-sample prophet inequalities (SSPIs), i.e., prophet inequalities where only a single sample from each prior distribution is available. Besides a direct, and optimal, SSPI for the basic single … We study single-sample prophet inequalities (SSPIs), i.e., prophet inequalities where only a single sample from each prior distribution is available. Besides a direct, and optimal, SSPI for the basic single choice problem [Rubinstein et al., 2020], most existing SSPI results were obtained via an elegant, but inherently lossy, reduction to order-oblivious secretary (OOS) policies [Azar et al., 2014]. Motivated by this discrepancy, we develop an intuitive and versatile greedy-based technique that yields SSPIs directly rather than through the reduction to OOSs. Our results can be seen as generalizing and unifying a number of existing results in the area of prophet and secretary problems. Our algorithms significantly improve on the competitive guarantees for a number of interesting scenarios (including general matching with edge arrivals, bipartite matching with vertex arrivals, and certain matroids), and capture new settings (such as budget additive combinatorial auctions). Complementing our algorithmic results, we also consider mechanism design variants. Finally, we analyze the power and limitations of different SSPI approaches by providing a partial converse to the reduction from SSPI to OOS given by Azar et al.
The study of the prophet inequality problem in the limited information regime was initiated by Azar et al. [SODA'14] in the pursuit of prior-independent posted-price mechanisms. As they show, $O(1)$-competitive … The study of the prophet inequality problem in the limited information regime was initiated by Azar et al. [SODA'14] in the pursuit of prior-independent posted-price mechanisms. As they show, $O(1)$-competitive policies are achievable using only a single sample from the distribution of each agent. A notable portion of their results relies on reducing the design of single-sample prophet inequalities (SSPIs) to that of order-oblivious secretary (OOS) policies. The above reduction comes at the cost of not fully utilizing the available samples. However, to date, this is essentially the only method for proving SSPIs for many combinatorial sets. Very recently, Rubinstein et al. [ITCS'20] give a surprisingly simple algorithm which achieves the optimal competitive ratio for the single-choice SSPI problem $-$ a result which is unobtainable going through the reduction to secretary problems. Motivated by this discrepancy, we study the competitiveness of simple SSPI policies directly, without appealing to results from OOS literature. In this direction, we first develop a framework for analyzing policies against a greedy-like prophet solution. Using this framework, we obtain the first SSPI for general (non-bipartite) matching environments, as well as improved competitive ratios for transversal and truncated partition matroids. Second, motivated by the observation that many OOS policies for matroids decompose the problem into independent rank-$1$ instances, we provide a meta-theorem which applies to any matroid satisfying this partition property. Leveraging the recent results by Rubinstein et al., we obtain improved competitive guarantees (most by a factor of $2$) for a number of matroids captured by the reduction of Azar et al. Finally, we discuss applications of our SSPIs to the design of mechanisms for multi-dimensional limited information settings with improved revenue and welfare guarantees.
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Prophet Inequalities with Limited InformationPablo D. Azar, Robert Kleinberg, and S. Matthew WeinbergPablo D. … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Prophet Inequalities with Limited InformationPablo D. Azar, Robert Kleinberg, and S. Matthew WeinbergPablo D. Azar, Robert Kleinberg, and S. Matthew Weinbergpp.1358 - 1377Chapter DOI:https://doi.org/10.1137/1.9781611973402.100PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract In the classical prophet inequality, a gambler observes a sequence of stochastic rewards V1, …, Vn and must decide, for each reward Vi, whether to keep it and stop the game or to forfeit the reward forever and reveal the next value Vi. The gambler's goal is to obtain a constant fraction of the expected reward that the optimal offline algorithm would get. Recently, prophet inequalities have been generalized to settings where the gambler can choose k items, and, more generally, where he can choose any independent set in a matroid. However, all the existing algorithms require the gambler to know the distribution from which the rewards V1, …, Vn are drawn. The assumption that the gambler knows the distribution from which V1, …, Vn are drawn is very strong. Instead, we work with the much simpler assumption that the gambler only knows a few samples from this distribution. We construct the first single-sample prophet inequalities for many settings of interest, whose guarantees all match the best possible asymptotically, even with full knowledge of the distribution. Specifically, we provide a novel single-sample algorithm when the gambler can choose any k elements whose analysis is based on random walks with limited correlation. In addition, we provide a black-box method for converting specific types of solutions to the related secretary problem to single-sample prophet inequalities, and apply it to several existing algorithms. Finally, we provide a constant-sample prophet inequality for constant-degree bipartite matchings. In addition, we apply these results to design the first posted-price and multi-dimensional auction mechanisms with limited information in settings with asymmetric bidders. Connections between prophet inequalities and posted-price mechanisms are already known, but applying the existing framework requires knowledge of the underlying distributions, as well as the so-called "virtual values" even when the underlying prophet inequalities do not. We therefore provide an extension of this framework that bypasses virtual values altogether, allowing our mechanisms to take full advantage of the limited information required by our new prophet inequalities. Previous chapter Next chapter RelatedDetails Published:2014ISBN:978-1-61197-338-9eISBN:978-1-61197-340-2 https://doi.org/10.1137/1.9781611973402Book Series Name:ProceedingsBook Code:PRDA14Book Pages:viii + 1885
The study of the prophet inequality problem in the limited information regime was initiated by Azar et al. [SODA'14] in the pursuit of prior-independent posted-price mechanisms. As they show, $O(1)$-competitive … The study of the prophet inequality problem in the limited information regime was initiated by Azar et al. [SODA'14] in the pursuit of prior-independent posted-price mechanisms. As they show, $O(1)$-competitive policies are achievable using only a single sample from the distribution of each agent. A notable portion of their results relies on reducing the design of single-sample prophet inequalities (SSPIs) to that of order-oblivious secretary (OOS) policies. The above reduction comes at the cost of not fully utilizing the available samples. However, to date, this is essentially the only method for proving SSPIs for many combinatorial sets. Very recently, Rubinstein et al. [ITCS'20] give a surprisingly simple algorithm which achieves the optimal competitive ratio for the single-choice SSPI problem $-$ a result which is unobtainable going through the reduction to secretary problems. Motivated by this discrepancy, we study the competitiveness of simple SSPI policies directly, without appealing to results from OOS literature. In this direction, we first develop a framework for analyzing policies against a greedy-like prophet solution. Using this framework, we obtain the first SSPI for general (non-bipartite) matching environments, as well as improved competitive ratios for transversal and truncated partition matroids. Second, motivated by the observation that many OOS policies for matroids decompose the problem into independent rank-$1$ instances, we provide a meta-theorem which applies to any matroid satisfying this partition property. Leveraging the recent results by Rubinstein et al., we obtain improved competitive guarantees (most by a factor of $2$) for a number of matroids captured by the reduction of Azar et al. Finally, we discuss applications of our SSPIs to the design of mechanisms for multi-dimensional limited information settings with improved revenue and welfare guarantees.
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA)The Two-Sided Game of Googol and Sample-Based Prophet InequalitiesJosé R. Correa, Andrés Cristi, Boris Epstein, … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA)The Two-Sided Game of Googol and Sample-Based Prophet InequalitiesJosé R. Correa, Andrés Cristi, Boris Epstein, and José A. SotoJosé R. Correa, Andrés Cristi, Boris Epstein, and José A. Sotopp.2066 - 2081Chapter DOI:https://doi.org/10.1137/1.9781611975994.127PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. In this paper we consider a variant of the problem and explore its connections to data-driven online selection. Specifically, we are given n cards with arbitrary nonnegative numbers written on both sides. The cards are randomly placed on n consecutive positions on a table, and for each card, the visible side is also selected at random. The player sees the visible side of all cards and wants to select the card with the maximum hidden value. To this end, the player flips the first card, sees its hidden value and decides whether to pick it or drop it and continue with the next card. We study algorithms for two natural objectives. In the first one, similar to the secretary problem, the player wants to maximize the probability of selecting the maximum hidden value. We show that this can be done with probability at least 0.45292. In the second objective, similar to the prophet inequality, the player wants to maximize the expectation of the selected hidden value. Here we show a guarantee of at least 0.63518 with respect to the expected maximum hidden value. Our algorithms result from combining three basic strategies. One is to stop whenever we see a value larger than the initial n visible numbers. The second one is to stop the first time the last flipped card's value is the largest of the currently n visible numbers in the table. And the third one is similar to the latter but to stop it additionally requires that the last flipped value is larger than the value on the other side of its card. We apply our results to the prophet secretary problem with unknown distributions, but with access to a single sample from each distribution. In particular, our guarantee improves upon 1 – 1/e for this problem, which is the currently best known guarantee and only works for the i.i.d. prophet inequality with samples. Previous chapter Next chapter RelatedDetails Published:2020eISBN:978-1-61197-599-4 https://doi.org/10.1137/1.9781611975994Book Series Name:ProceedingsBook Code:PRDA20Book Pages:xxii + 3011
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Online Weighted Matching with a SampleHaim Kaplan, David Naori, and Danny RazHaim Kaplan, David … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Online Weighted Matching with a SampleHaim Kaplan, David Naori, and Danny RazHaim Kaplan, David Naori, and Danny Razpp.1247 - 1272Chapter DOI:https://doi.org/10.1137/1.9781611977073.52PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract We study the greedy-based online algorithm for edge-weighted matching with (one-sided) vertex arrivals in bipartite graphs, and edge arrivals in general graphs. This algorithm was first studied more than a decade ago by Korula and Pál for the bipartite case in the random-order model. While the weighted bipartite matching problem is solved in the random-order model, this is not the case in recent and exciting online models in which the online player is provided with a sample, and the arrival order is adversarial. The greedy-based algorithm is arguably the most natural and practical algorithm to be applied in these models. Despite its simplicity and appeal, and despite being studied in multiple works, the greedy-based algorithm was not fully understood in any of the studied online models, and its actual performance remained an open question for more than a decade. We provide a thorough analysis of the greedy-based algorithm in several online models. For vertex arrivals in bipartite graphs, we characterize the exact competitive-ratio of this algorithm in the random-order model, for any arrival order of the vertices subsequent to the sampling phase (adversarial and random orders in particular). We use it to derive tight analysis in the recent adversarial-order model with a sample (AOS model) for any sample size, providing the first result in this model beyond the simple secretary problem. Then, we generalize and strengthen the black box method of converting results in the random-order model to single-sample prophet inequalities, and use it to derive the state-of-the-art single-sample prophet inequality for the problem. Finally, we use our new techniques to analyze the greedy-based algorithm for edge arrivals in general graphs and derive results in all the mentioned online models. In this case as well, we improve upon the state-of-the-art single-sample prophet inequality. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-707-3 https://doi.org/10.1137/1.9781611977073Book Series Name:ProceedingsBook Code:PRDA22Book Pages:xvii + 3771
The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. We consider a variant of … The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. We consider a variant of the problem and explore its connections to data-driven online selection. Specifically, we are given $n$ cards with arbitrary non-negative numbers written on both sides. The cards are randomly placed on $n$ consecutive positions on a table, and for each card, the visible side is also selected at random. The player sees the visible side of all cards and wants to select the card with the maximum hidden value. To this end, the player flips the first card, sees its hidden value and decides whether to pick it or drop it and continue with the next card. We study algorithms for two natural objectives. In the first one, as in the secretary problem, the player wants to maximize the probability of selecting the maximum hidden value. We show that this can be done with probability at least $0.45292$. In the second one, similar to the prophet inequality, the player maximizes the expectation of the selected hidden value. We show a guarantee of at least $0.63518$ with respect to the expected maximum hidden value. Our algorithms result from combining three basic strategies. One is to stop whenever we see a value larger than the initial $n$ visible numbers. The second one is to stop the first time the last flipped card's value is the largest of the currently $n$ visible numbers in the table. And the third one is similar to the latter but it additionally requires that the last flipped value is larger than the value on the other side of its card. We apply our results to the prophet secretary problem with unknown distributions, but with access to a single sample from each distribution. Our guarantee improves upon $1-1/e$ for this problem, which is the currently best known guarantee and only works for the i.i.d. case.
The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. We consider a variant of … The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. We consider a variant of the problem and explore its connections to data-driven online selection. Specifically, we are given $n$ cards with arbitrary non-negative numbers written on both sides. The cards are randomly placed on $n$ consecutive positions on a table, and for each card, the visible side is also selected at random. The player sees the visible side of all cards and wants to select the card with the maximum hidden value. To this end, the player flips the first card, sees its hidden value and decides whether to pick it or drop it and continue with the next card. We study algorithms for two natural objectives. In the first one, as in the secretary problem, the player wants to maximize the probability of selecting the maximum hidden value. We show that this can be done with probability at least $0.45292$. In the second one, similar to the prophet inequality, the player maximizes the expectation of the selected hidden value. We show a guarantee of at least $0.63518$ with respect to the expected maximum hidden value. Our algorithms result from combining three basic strategies. One is to stop whenever we see a value larger than the initial $n$ visible numbers. The second one is to stop the first time the last flipped card's value is the largest of the currently $n$ visible numbers in the table. And the third one is similar to the latter but it additionally requires that the last flipped value is larger than the value on the other side of its card. We apply our results to the prophet secretary problem with unknown distributions, but with access to a single sample from each distribution. Our guarantee improves upon $1-1/e$ for this problem, which is the currently best known guarantee and only works for the i.i.d. case.
The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. In this paper we consider … The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. In this paper we consider a variant of the problem and explore its connections to data-driven online selection. Specifically, we are given n cards with arbitrary nonnegative numbers written on both sides. The cards are randomly placed on n consecutive positions on a table, and for each card, the visible side is also selected at random. The player sees the visible side of all cards and wants to select the card with the maximum hidden value. To this end, the player flips the first card, sees its hidden value and decides whether to pick it or drop it and continue with the next card. We study algorithms for two natural objectives. In the first one, similar to the secretary problem, the player wants to maximize the probability of selecting the maximum hidden value. We show that this can be done with probability at least 0.45292. In the second objective, similar to the prophet inequality, the player wants to maximize the expectation of the selected hidden value. Here we show a guarantee of at least 0.63518 with respect to the expected maximum hidden value. Our algorithms result from combining three basic strategies. One is to stop whenever we see a value larger than the initial n visible numbers. The second one is to stop the first time the last flipped card's value is the largest of the currently n visible numbers in the table. And the third one is similar to the latter but to stop it additionally requires that the last flipped value is larger than the value on the other side of its card. We apply our results to the prophet secretary problem with unknown distributions, but with access to a single sample from each distribution. In particular, our guarantee improves upon 1 − 1/e for this problem, which is the currently best known guarantee and only works for the i.i.d. prophet inequality with samples.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms, and is used to derive new and improved results for combinatorial markets (with and without complements), multi-dimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms, and is used to derive new and improved results for combinatorial markets (with and without complements), multi-dimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms, and is used to derive new and improved results for combinatorial markets (with and without complements), multi-dimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially … We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially gets to sample each of $N$ items independently with probability $p$, and can observe the relative rankings of these sampled items. Then, the DM faces the remaining items in an online fashion, observing the relative rankings of all revealed items. While scanning the sequence the DM makes irrevocable stop/continue decisions and her reward for stopping the sequence facing the item with rank $i$ is $Y_i$. The goal of the DM is to maximize her reward. We start by studying the case in which the values $Y_i$ are known to the DM, and then move to the case in which these values are adversarial. For the former case, we write the natural linear program that captures the performance of an algorithm, and take its continuous limit. We prove a structural result about this continuous limit, which allows us to reduce the problem to a relatively simple real optimization problem. We establish that the optimal algorithm is given by a sequence of thresholds $t_1\le t_2\le\cdots$ such that the DM should stop if seeing an item with current ranking $i$ after time $t_i$. Additionally we are able to recover several classic results in the area such as those for secretary problem and the minimum ranking problem. For the adversarial case, we obtain a similar linear program with an additional stochastic dominance constraint. Using the same machinery we are able to pin down the optimal competitive ratios for all values of $p$. Notably, we prove that as $p$ approaches 1, our guarantee converges linearly to 0.745, matching that of the i.i.d.~prophet inequality. Also interesting is the case $p=1/2$, where our bound evaluates to $0.671$, which improves upon the state of the art.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms and is used to derive new and improved results for combinatorial markets (with and without complements), multidimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Tight Guarantees for Multi-unit Prophet Inequalities and Online Stochastic KnapsackJiashuo Jiang, Will Ma, and … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Tight Guarantees for Multi-unit Prophet Inequalities and Online Stochastic KnapsackJiashuo Jiang, Will Ma, and Jiawei ZhangJiashuo Jiang, Will Ma, and Jiawei Zhangpp.1221 - 1246Chapter DOI:https://doi.org/10.1137/1.9781611977073.51PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract Prophet inequalities are a useful tool for designing online allocation procedures and comparing their performance to the optimal offline allocation. In the basic setting of k-unit prophet inequalities, the procedure of Alaei [2] with its celebrated performance guarantee of has found widespread adoption in mechanism design and general online allocation problems in online advertising, healthcare scheduling, and revenue management. Despite being commonly used for implementing a fractional allocation in an online fashion, the tightness of Alaei's procedure for a given k has remained unknown. In this paper we resolve this question, characterizing the tight bound by identifying the structure of the optimal online implementation, and consequently improving the best-known guarantee for k-unit prophet inequalities for all k > 1. We also consider the more general online stochastic knapsack problem where each individual allocation can consume an arbitrary fraction of the initial capacity. Here we introduce a new "best-fit" procedure for implementing a fractionally-feasible knapsack solution online, with a performance guarantee of ≈ 0.319, which we also show is tight with respect to the standard LP relaxation. This improves the previously best-known guarantee of 0.2 for online knapsack. Our analysis differs from existing ones by eschewing the need to split items into "large" or "small" based on capacity consumption, using instead an invariant for the overall utilization on different sample paths. All in all, our results imply tight (non-greedy) Online Contention Resolution Schemes for k-uniform matroids and the knapsack polytope, respectively, which has further implications. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-707-3 https://doi.org/10.1137/1.9781611977073Book Series Name:ProceedingsBook Code:PRDA22Book Pages:xvii + 3771
In the classical prophet inequality, a gambler observes a sequence of stochastic rewards $V_1,...,V_n$ and must decide, for each reward $V_i$, whether to keep it and stop the game or … In the classical prophet inequality, a gambler observes a sequence of stochastic rewards $V_1,...,V_n$ and must decide, for each reward $V_i$, whether to keep it and stop the game or to forfeit the reward forever and reveal the next value $V_i$. The gambler's goal is to obtain a constant fraction of the expected reward that the optimal offline algorithm would get. Recently, prophet inequalities have been generalized to settings where the gambler can choose $k$ items, and, more generally, where he can choose any independent set in a matroid. However, all the existing algorithms require the gambler to know the distribution from which the rewards $V_1,...,V_n$ are drawn. The assumption that the gambler knows the distribution from which $V_1,...,V_n$ are drawn is very strong. Instead, we work with the much simpler assumption that the gambler only knows a few samples from this distribution. We construct the first single-sample prophet inequalities for many settings of interest, whose guarantees all match the best possible asymptotically, \emph{even with full knowledge of the distribution}. Specifically, we provide a novel single-sample algorithm when the gambler can choose any $k$ elements whose analysis is based on random walks with limited correlation. In addition, we provide a black-box method for converting specific types of solutions to the related \emph{secretary problem} to single-sample prophet inequalities, and apply it to several existing algorithms. Finally, we provide a constant-sample prophet inequality for constant-degree bipartite matchings. We apply these results to design the first posted-price and multi-dimensional auction mechanisms with limited information in settings with asymmetric bidders.
We consider the prophet inequality problem for (not necessarily bipartite) matching problems with independent edge values, under both edge arrivals and vertex arrivals. We show constant-factor prophet inequalities for the … We consider the prophet inequality problem for (not necessarily bipartite) matching problems with independent edge values, under both edge arrivals and vertex arrivals. We show constant-factor prophet inequalities for the case where the online algorithm has only limited access to the value distributions through samples. First, we give a $16$-approximate prophet inequality for matching in general graphs under edge arrivals that uses only a single sample from each value distribution as prior information. Then, for bipartite matching and (one-sided) vertex arrivals, we show an improved bound of $8$ that also uses just a single sample from each distribution. Finally, we show how to turn our $16$-approximate single-sample prophet inequality into a truthful single-sample mechanism for online bipartite matching with vertex arrivals.
We consider the prophet inequality problem for (not necessarily bipartite) matching problems with independent edge values, under both edge arrivals and vertex arrivals. We show constant-factor prophet inequalities for the … We consider the prophet inequality problem for (not necessarily bipartite) matching problems with independent edge values, under both edge arrivals and vertex arrivals. We show constant-factor prophet inequalities for the case where the online algorithm has only limited access to the value distributions through samples. First, we give a $16$-approximate prophet inequality for matching in general graphs under edge arrivals that uses only a single sample from each value distribution as prior information. Then, for bipartite matching and (one-sided) vertex arrivals, we show an improved bound of $8$ that also uses just a single sample from each distribution. Finally, we show how to turn our $16$-approximate single-sample prophet inequality into a truthful single-sample mechanism for online bipartite matching with vertex arrivals.
In the classical prophet inequality, a gambler faces a sequence of items, whose values are drawn independently from known distributions. Upon the arrival of each item, its value is realized … In the classical prophet inequality, a gambler faces a sequence of items, whose values are drawn independently from known distributions. Upon the arrival of each item, its value is realized and the gambler either accepts it and the game ends, or irrevocably rejects it and continues to the next item. The goal is to maximize the value of the selected item and compete against the expected maximum value of all items. A tight competitive ratio of $\frac{1}{2}$ is established in the classical setting and various relaxations have been proposed to surpass the barrier, including the i.i.d. model, the order selection model, and the random order model. In this paper, we advance the study of the order selection prophet inequality, in which the gambler is given the extra power for selecting the arrival order of the items. Our main result is a $0.725$-competitive algorithm, that substantially improves the state-of-the-art $0.669$ ratio by Correa, Saona and Ziliotto~(Math. Program. 2021), achieved in the harder random order model. Recently, Agrawal, Sethuraman and Zhang~(EC 2021) proved that the task of selecting the optimal order is NP-hard. Despite this fact, we introduce a novel algorithm design framework that translates the discrete order selection problem into a continuous arrival time design problem. From this perspective, we can focus on the arrival time design without worrying about the threshold optimization afterwards. As a side result, we achieve the optimal $0.745$ competitive ratio by applying our algorithm to the i.i.d. model.
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Robust Secretary and Prophet Algorithms for Packing Integer ProgramsC.J. Argue, Anupam Gupta, Marco Molinaro, … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Robust Secretary and Prophet Algorithms for Packing Integer ProgramsC.J. Argue, Anupam Gupta, Marco Molinaro, and Sahil SinglaC.J. Argue, Anupam Gupta, Marco Molinaro, and Sahil Singlapp.1273 - 1297Chapter DOI:https://doi.org/10.1137/1.9781611977073.53PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract We study the problem of solving Packing Integer Programs (PIPs) in the online setting, where columns in [0, 1]d of the constraint matrix are revealed sequentially, and the goal is to pick a subset of the columns that sum to at most B in each coordinate while maximizing the objective. Excellent results are known in the secretary setting, where the columns are adversarially chosen, but presented in a uniformly random order. However, these existing algorithms are susceptible to adversarial attacks: they try to "learn" characteristics of a good solution, but tend to over-fit to the model, and hence a small number of adversarial corruptions can cause the algorithm to fail. In this paper, we give the first robust algorithms for Packing Integer Programs, specifically in the recently proposed Byzantine Secretary framework [BGSZ20]. Our techniques are based on a two-level use of online learning, to robustly learn an approximation to the optimal value, and then to use this robust estimate to pick a good solution. These techniques are general and we use them to design robust algorithms for PIPs in the prophet model as well, specifically in the Prophet-with-Augmentations framework [ISW20]. We also improve known results in the Byzantine Secretary framework: we make the non-constructive results algorithmic and improve the existing bounds for single-item and matroid constraints. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-707-3 https://doi.org/10.1137/1.9781611977073Book Series Name:ProceedingsBook Code:PRDA22Book Pages:xvii + 3771
In a prophet inequality problem, n independent random variables are presented to a gambler one by one. The gambler decides when to stop the sequence and obtains the most recent … In a prophet inequality problem, n independent random variables are presented to a gambler one by one. The gambler decides when to stop the sequence and obtains the most recent value as reward. We evaluate a stopping rule by the worst-case ratio between its expected reward and the expectation of the maximum variable. In the classic setting, the order is fixed, and the optimal ratio is known to be 1/2. Three variants of this problem have been extensively studied: the prophet-secretary model, where variables arrive in uniformly random order; the free-order model, where the gambler chooses the arrival order; and the i.i.d. model, where the distributions are all the same, rendering the arrival order irrelevant. Most of the literature assumes that distributions are known to the gambler. Recent work has considered the question of what is achievable when the gambler has access only to a few samples per distribution. Surprisingly, in the fixed-order case, a single sample from each distribution is enough to approximate the optimal ratio, but this is not the case in any of the three variants. We provide a unified proof that for all three variants of the problem, a constant number of samples (independent of n) for each distribution is good enough to approximate the optimal ratios. Prior to our work, this was known to be the case only in the i.i.d. variant. Previous works relied on explicitly constructing sample-based algorithms that match the best possible ratio. Remarkably, the optimal ratios for the prophet-secretary and the free-order variants with full information are still unknown. Consequently, our result requires a significantly different approach than for the classic problem and the i.i.d. variant, where the optimal ratios and the algorithms that achieve them are known. We complement our result showing that our algorithms can be implemented in polynomial time. A key ingredient in our proof is an existential result based on a minimax argument, which states that there must exist an algorithm that attains the optimal ratio and does not rely on the knowledge of the upper tail of the distributions. A second key ingredient is a refined sample-based version of a decomposition of the instance into "small" and "large" variables, first introduced by Liu et al. [EC'21]. The universality of our approach opens avenues for generalization to other sample-based models. Furthermore, we uncover structural properties that might help pinpoint the optimal ratios in the full-information cases.
In a single-parameter mechanism design problem, a provider is looking to sell some service to a group of potential buyers. Each buyer i has a private value vi for receiving … In a single-parameter mechanism design problem, a provider is looking to sell some service to a group of potential buyers. Each buyer i has a private value vi for receiving this service, and some feasibility constraint restricts which subsets of buyers can be served simultaneously. Recent work in economics introduced (deferred-acceptance) clock auctions as a superior class of auctions for this problem, due to their transparency, simplicity, and very strong incentive guarantees. Subsequent work in computer science focused on evaluating these auctions with respect to their social welfare approximation guarantees, leading to strong impossibility results: in the absence of prior information regarding the buyers' values, no deterministic clock auction can achieve a bounded approximation, even for simple feasibility constraints with only two maximal feasible sets.
In the Matroid Secretary Problem (MSP), the elements of the ground set of a Matroid are revealed on-line one by one, each together with its value. An algorithm for the … In the Matroid Secretary Problem (MSP), the elements of the ground set of a Matroid are revealed on-line one by one, each together with its value. An algorithm for the MSP is called Matroid-Unknown if, at every stage of its execution, it only knows (i) the elements that have been revealed so far and their values and (ii) an oracle for testing whether or not a subset the elements that have been revealed so far forms an independent set. An algorithm is called Known-Cardinality if it knows (i), (ii) and also knows from the start the cardinality n of the ground set of the Matroid. We present here a Known-Cardinality algorithm with a competitive-ratio of order log log the rank of the Matroid. The prior known results for a OC algorithm are a competitive-ratio of log the rank of the Matroid, by Babaioff et al. (2007), and a competitive-ratio of square root of log the rank of the Matroid, by Chakraborty and Lachish (2012).
Let $X_i \geq 0$ be independent, $i = 1, \cdots, n$, and $X^\ast_n = \max(X_1, \cdots, X_n)$. Let $t(c) (s(c))$ be the threshold stopping rule for $X_1, \cdots, X_n$, defined … Let $X_i \geq 0$ be independent, $i = 1, \cdots, n$, and $X^\ast_n = \max(X_1, \cdots, X_n)$. Let $t(c) (s(c))$ be the threshold stopping rule for $X_1, \cdots, X_n$, defined by $t(c) = \text{smallest} i$ for which $X_i \geq c(s(c) = \text{smallest} i$ for which $X_i > c), = n$ otherwise. Let $m$ be a median of the distribution of $X^\ast_n$. It is shown that for every $n$ and $\underline{X}$ either $EX^\ast_n \leq 2EX_{t(m)}$ or $EX^\ast_n \leq 2EX_{s(m)}$. This improves previously known results, [1], [4]. Some results for i.i.d. $X_i$ are also included.
Consider a gambler who observes a sequence of independent, non-negative random numbers and is allowed to stop the sequence at any time, claiming a reward equal to the most recent … Consider a gambler who observes a sequence of independent, non-negative random numbers and is allowed to stop the sequence at any time, claiming a reward equal to the most recent observation. The famous prophet inequality of Krengel, Sucheston, and Garling asserts that a gambler who knows the distribution of each random variable can achieve at least half as much reward, in expectation, as a "prophet" who knows the sampled values of each random variable and can choose the largest one. We generalize this result to the setting in which the gambler and the prophet are allowed to make more than one selection, subject to a matroid constraint. We show that the gambler can still achieve at least half as much reward as the prophet; this result is the best possible, since it is known that the ratio cannot be improved even in the original prophet inequality, which corresponds to the special case of rank-one matroids. Generalizing the result still further, we show that under an intersection of $p$ matroid constraints, the prophet's reward exceeds the gambler's by a factor of at most $O(p)$, and this factor is also tight.
The matroid secretary problem admits several variants according to the order in which the matroid's elements are presented and how the elements are assigned weights. As the main result of … The matroid secretary problem admits several variants according to the order in which the matroid's elements are presented and how the elements are assigned weights. As the main result of this article, we devise the first constant competitive algorithm for the model in which both the order and the weight assignment are selected uniformly at random, achieving a competitive ratio of approximately $5.7187$. This result is based on the nontrivial fact that every matroid can be approximately decomposed into uniformly dense minors. Based on a preliminary version of this work, Oveis Gharan and Vondrák [Proceedings of the 19th Annual European Symposium on Algorithms, ESA, 2011, pp. 335--346] devised a $40e/(e-1)$-competitive algorithm for the stronger random-assignment adversarial-order model. In this article we present an alternative algorithm achieving a competitive ratio of $16e/(e-1)$. As additional results, we obtain new algorithms for the standard model of the matroid secretary problem: the adversarial-assignment random-order model. We present an $O(\log r)$-competitive algorithm for general matroids which, unlike previous ones, uses only comparisons among seen elements. We also present constant competitive algorithms for various matroid classes, such as column-sparse representable matroids and low-density matroids. The latter class includes, as a special case, the duals of graphic matroids.
We present a general framework for approximately reducing the mechanism design problem for multiple agents to single agent subproblems in the context of Bayesian combinatorial auctions. Our framework can be … We present a general framework for approximately reducing the mechanism design problem for multiple agents to single agent subproblems in the context of Bayesian combinatorial auctions. Our framework can be applied to any setting which roughly satisfies the following assumptions: (i) agents' types are distributed independently (not necessarily identically), (ii) objective function is additively separable over the agents, and (iii) there are no interagent constraints except for the supply constraints (i.e., that the total allocation of each item should not exceed the supply). Our framework is general in the sense that it makes no direct assumption about agents' valuations, type distributions, or single agent constraints (e.g., budget, incentive compatibility, etc.). We present two generic multiagent mechanisms which use single agent mechanisms as black boxes. If an $\alpha$-approximate single agent mechanism is available for each agent, and assuming no agent ever demands more than $\frac{1}{k}$ of all units of each item, our generic multiagent mechanisms are $\gamma_{k}\alpha$-approximations of the optimal multiagent mechanism, where $\gamma_{k}$ is a constant which is at least $1-\frac{1}{\sqrt{k+3}}$. As a byproduct of our construction, we present a generalization of prophet inequalities where both gambler and prophet are allowed to pick $k$ numbers each to receive a reward equal to their sum. Finally, we use our framework to obtain multiagent mechanisms with improved approximation factor for several settings from the literature.
We study generalizations of the ``Prophet Inequality'' and ``Secretary Problem'', where the algorithm is restricted to an arbitrary downward-closed set system. For 0,1 values, we give O(n)-competitive algorithms for both … We study generalizations of the ``Prophet Inequality'' and ``Secretary Problem'', where the algorithm is restricted to an arbitrary downward-closed set system. For 0,1 values, we give O(n)-competitive algorithms for both problems. This is close to the Omega(n/log n) lower bound due to Babaioff, Immorlica, and Kleinberg. For general values, our results translate to O(log(n) log(r))-competitive algorithms, where r is the cardinality of the largest feasible set. This resolves (up to the O(loglog(n) log(r)) factor) an open question posed to us by Bobby Kleinberg.
A central object in optimal stopping theory is the single-choice prophet inequality for independent, identically distributed random variables: given a sequence of random variables X1, ..., Xn drawn independently from … A central object in optimal stopping theory is the single-choice prophet inequality for independent, identically distributed random variables: given a sequence of random variables X1, ..., Xn drawn independently from a distribution F, the goal is to choose a stopping time τ so as to maximize α such that for all distributions F we have E[Xτ]≥α•E[maxt Xt]. What makes this problem challenging is that the decision whether τ=t may only depend on the values of the random variables X1, ..., Xt and on the distribution F. For a long time the best known bound for the problem had been α≥1-1/e≅0.632, but quite recently a tight bound of α≅0.745 was obtained. The case where F is unknown, such that the decision whether τ=t may depend only on the values of the random variables X1, ..., Xt, is equally well motivated but has received much less attention. A straightforward guarantee for this case of α≥1-1/e≅0.368 can be derived from the solution to the secretary problem, where an arbitrary set of values arrive in random order and the goal is to maximize the probability of selecting the largest value. We show that this bound is in fact tight. We then investigate the case where the stopping time may additionally depend on a limited number of samples from~F, and show that even with o(n) samples α≥1/e. On the other hand, n samples allow for a significant improvement, while O(n2) samples are equivalent to knowledge of the distribution: specifically, with n samples α≥1-1/e≅0.632 and α≥ln(2)≅0.693, and with O(n2) samples α≥0.745-ε for any ε>0.
We introduce a novel framework of Prophet Inequalities for combinatorial valuation functions. For a (non-monotone) submodular objective function over an arbitrary matroid feasibility constraint, we give an O(1)-competitive algorithm. For … We introduce a novel framework of Prophet Inequalities for combinatorial valuation functions. For a (non-monotone) submodular objective function over an arbitrary matroid feasibility constraint, we give an O(1)-competitive algorithm. For a monotone subadditive objective function over an arbitrary downward- closed feasibility constraint, we give an O(log n log2 r)- competitive algorithm (where r is the cardinality of the largest feasible subset).Inspired by the proof of our subadditive prophet inequality, we also obtain an O(log n · log2 r)-competitive algorithm for the Secretary Problem with a monotone subadditive objective function subject to an arbitrary downward-closed feasibility constraint. Even for the special case of a cardinality feasibility constraint, our algorithm circumvents an lower bound by Bateni, Hajiaghayi, and Zadimoghaddam [10] in a restricted query model.En route to our submodular prophet inequality, we prove a technical result of independent interest: we show a variant of the Correlation Gap Lemma [14, 1] for nonmonotone submodular functions.
We study anonymous posted price mechanisms for combinatorial auctions in a Bayesian framework. In a posted price mechanism, item prices are posted, then the consumers approach the seller sequentially in … We study anonymous posted price mechanisms for combinatorial auctions in a Bayesian framework. In a posted price mechanism, item prices are posted, then the consumers approach the seller sequentially in an arbitrary order, each purchasing her favorite bundle from among the unsold items at the posted prices. These mechanisms are simple, transparent and trivially dominant strategy incentive compatible (DSIC).We show that when agent preferences are fractionally subadditive (which includes all submodular functions), there always exist prices that, in expectation, obtain at least half of the optimal welfare. Our result is constructive: given black-box access to a combinatorial auction algorithm A, sample access to the prior distribution, and appropriate query access to the sampled valuations, one can compute, in polytime, prices that guarantee at least half of the expected welfare of A. As a corollary, we obtain the first polytime (in n and m) constant-factor DSIC mechanism for Bayesian submodular combinatorial auctions, given access to demand query oracles. Our results also extend to valuations with complements, where the approximation factor degrades linearly with the level of complementarity.
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Prophet Inequalities with Limited InformationPablo D. Azar, Robert Kleinberg, and S. Matthew WeinbergPablo D. … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Prophet Inequalities with Limited InformationPablo D. Azar, Robert Kleinberg, and S. Matthew WeinbergPablo D. Azar, Robert Kleinberg, and S. Matthew Weinbergpp.1358 - 1377Chapter DOI:https://doi.org/10.1137/1.9781611973402.100PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract In the classical prophet inequality, a gambler observes a sequence of stochastic rewards V1, …, Vn and must decide, for each reward Vi, whether to keep it and stop the game or to forfeit the reward forever and reveal the next value Vi. The gambler's goal is to obtain a constant fraction of the expected reward that the optimal offline algorithm would get. Recently, prophet inequalities have been generalized to settings where the gambler can choose k items, and, more generally, where he can choose any independent set in a matroid. However, all the existing algorithms require the gambler to know the distribution from which the rewards V1, …, Vn are drawn. The assumption that the gambler knows the distribution from which V1, …, Vn are drawn is very strong. Instead, we work with the much simpler assumption that the gambler only knows a few samples from this distribution. We construct the first single-sample prophet inequalities for many settings of interest, whose guarantees all match the best possible asymptotically, even with full knowledge of the distribution. Specifically, we provide a novel single-sample algorithm when the gambler can choose any k elements whose analysis is based on random walks with limited correlation. In addition, we provide a black-box method for converting specific types of solutions to the related secretary problem to single-sample prophet inequalities, and apply it to several existing algorithms. Finally, we provide a constant-sample prophet inequality for constant-degree bipartite matchings. In addition, we apply these results to design the first posted-price and multi-dimensional auction mechanisms with limited information in settings with asymmetric bidders. Connections between prophet inequalities and posted-price mechanisms are already known, but applying the existing framework requires knowledge of the underlying distributions, as well as the so-called "virtual values" even when the underlying prophet inequalities do not. We therefore provide an extension of this framework that bypasses virtual values altogether, allowing our mechanisms to take full advantage of the limited information required by our new prophet inequalities. Previous chapter Next chapter RelatedDetails Published:2014ISBN:978-1-61197-338-9eISBN:978-1-61197-340-2 https://doi.org/10.1137/1.9781611973402Book Series Name:ProceedingsBook Code:PRDA14Book Pages:viii + 1885
We introduce a new rounding technique designed for online optimization problems, which is related to contention resolution schemes, a technique initially introduced in the context of submodular function maximization. Our … We introduce a new rounding technique designed for online optimization problems, which is related to contention resolution schemes, a technique initially introduced in the context of submodular function maximization. Our rounding technique, which we call online contention resolution schemes (OCRSs), is applicable to many online selection problems, including Bayesian online selection, oblivious posted pricing mechanisms, and stochastic probing models. It allows for handling a wide set of constraints, and shares many strong properties of offline contention resolution schemes. In particular, OCRSs for different constraint families can be combined to obtain an OCRS for their intersection. Moreover, we can approximately maximize submodular functions in the online settings we consider.We, thus, get a broadly applicable framework for several online selection problems, which improves on previous approaches in terms of the types of constraints that can be handled, the objective functions that can be dealt with, and the assumptions on the strength of the adversary. Furthermore, we resolve two open problems from the literature; namely, we present the first constant-factor constrained oblivious posted price mechanism for matroid constraints, and the first constant-factor algorithm for weighted stochastic probing with deadlines.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms, and is used to derive new and improved results for combinatorial markets (with and without complements), multi-dimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
The secretary and the prophet inequality problems are central to the field of Stopping Theory. Recently, there has been a lot of work in generalizing these models to multiple items … The secretary and the prophet inequality problems are central to the field of Stopping Theory. Recently, there has been a lot of work in generalizing these models to multiple items because of their applications in mechanism design. The most important of these generalizations are to matroids and to combinatorial auctions (extends bipartite matching). Kleinberg-Weinberg [33] and Feldman et al. [17] show that for adversarial arrival order of random variables the optimal prophet inequalities give a 1/2-approximation. For many settings, however, it's conceivable that the arrival order is chosen uniformly at random, akin to the secretary problem. For such a random arrival model, we improve upon the 1/2-approximation and obtain (1 – 1/e)-approximation prophet inequalities for both matroids and combinatorial auctions. This also gives improvements to the results of Yan [45] and Esfandiari et al. [15] who worked in the special cases where we can fully control the arrival order or when there is only a single item.Our techniques are threshold based. We convert our discrete problem into a continuous setting and then give a generic template on how to dynamically adjust these thresholds to lower bound the expected total welfare.
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA)Competitive Analysis with a Sample and the Secretary ProblemHaim Kaplan, David Naori, and Danny RazHaim … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA)Competitive Analysis with a Sample and the Secretary ProblemHaim Kaplan, David Naori, and Danny RazHaim Kaplan, David Naori, and Danny Razpp.2082 - 2095Chapter DOI:https://doi.org/10.1137/1.9781611975994.128PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract We extend the standard online worst-case model to accommodate past experience which is available to the online player in many practical scenarios. We do this by revealing a random sample of the adversarial input to the online player ahead of time. The online player competes with the expected optimal value on the part of the input that arrives online. Our model bridges between existing online stochastic models (e.g., items are drawn i.i.d. from a distribution) and the online worst-case model. We also extend in a similar manner (by revealing a sample) the online random-order model. We study the classical secretary problem in our new models. In the worst-case model we present a simple online algorithm with optimal competitive-ratio for any sample size. In the random-order model, we also give a simple online algorithm with an almost tight competitive-ratio for small sample sizes. Interestingly, we prove that for a large enough sample, no algorithm can be simultaneously optimal both in the worst-cast and random-order models. Previous chapter Next chapter RelatedDetails Published:2020eISBN:978-1-61197-599-4 https://doi.org/10.1137/1.9781611975994Book Series Name:ProceedingsBook Code:PRDA20Book Pages:xxii + 3011
The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. In this paper we consider … The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. In this paper we consider a variant of the problem and explore its connections to data-driven online selection. Specifically, we are given n cards with arbitrary nonnegative numbers written on both sides. The cards are randomly placed on n consecutive positions on a table, and for each card, the visible side is also selected at random. The player sees the visible side of all cards and wants to select the card with the maximum hidden value. To this end, the player flips the first card, sees its hidden value and decides whether to pick it or drop it and continue with the next card. We study algorithms for two natural objectives. In the first one, similar to the secretary problem, the player wants to maximize the probability of selecting the maximum hidden value. We show that this can be done with probability at least 0.45292. In the second objective, similar to the prophet inequality, the player wants to maximize the expectation of the selected hidden value. Here we show a guarantee of at least 0.63518 with respect to the expected maximum hidden value. Our algorithms result from combining three basic strategies. One is to stop whenever we see a value larger than the initial n visible numbers. The second one is to stop the first time the last flipped card's value is the largest of the currently n visible numbers in the table. And the third one is similar to the latter but to stop it additionally requires that the last flipped value is larger than the value on the other side of its card. We apply our results to the prophet secretary problem with unknown distributions, but with access to a single sample from each distribution. In particular, our guarantee improves upon 1 − 1/e for this problem, which is the currently best known guarantee and only works for the i.i.d. prophet inequality with samples.
Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case … Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case competitive analysis, of particular importance in the design and analysis of simple (posted-price) incentive compatible mechanisms with provable approximation guarantees. A central open problem in this area concerns subadditive combinatorial auctions. Here $n$ agents with subadditive valuation functions compete for the assignment of $m$ items. The goal is to find an allocation of the items that maximizes the total value of the assignment. The question is whether there exists a prophet inequality for this problem that significantly beats the best known approximation factor of $O(\log m)$. We make major progress on this question by providing an $O(\log \log m)$ prophet inequality. Our proof goes through a novel primal-dual approach. It is also constructive, resulting in an online policy that takes the form of static and anonymous item prices that can be computed in polynomial time given appropriate query access to the valuations. As an application of our approach, we construct a simple and incentive compatible mechanism based on posted prices that achieves an $O(\log \log m)$ approximation to the optimal revenue for subadditive valuations under an item-independence assumption.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms and is used to derive new and improved results for combinatorial markets (with and without complements), multidimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is … We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is drawn independently from an a-priori known probability distribution. Under edge arrival, the weight of each edge is revealed upon arrival, and the algorithm decides whether to include it in the matching or not. Under vertex arrival, the weights of all edges from the newly arriving vertex to all previously arrived vertices are revealed, and the algorithm decides which of these edges, if any, to include in the matching. To study these settings, we introduce a novel unified framework of batched prophet inequalities that captures online settings where elements arrive in batches; in particular it captures matching under the two aforementioned arrival models. Our algorithms rely on the construction of suitable online contention resolution schemes (OCRS). We first extend the framework of OCRS to batched-OCRS, we then establish a reduction from batched prophet inequality to batched OCRS, and finally we construct batched OCRSs with selectable ratios of 0.337 and 0.5 for edge and vertex arrival models, respectively. Both results improve the state of the art for the corresponding settings. For vertex arrival, our result is tight. Interestingly, pricing-based prophet inequalities with comparable competitive ratios are unknown.
We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially … We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially gets to sample each of N items independently with probability p, and can observe the relative rankings of these sampled items. Then, the DM faces the remaining items in an online fashion, observing the relative rankings of all revealed items. While scanning the sequence the DM makes irrevocable stop/continue decisions and her reward for stopping the sequence facing the item with rank i is Y i . The goal of the DM is to maximize her reward. We start by studying the case in which the values Y i are known to the DM, and then move to the case in which these values are adversarial. For the former case we are able to recover several classic results in the area, thus giving a unifying framework for single selection optimal stopping. For the latter, we pin down the optimal algorithm, obtaining the optimal competitive ratios for all values of p. Funding: This work was partially supported by The Center for Mathematical Modeling at the University of Chile (ANID FB210005), Grant Anillo Information and Computation in Market Design (ANID ACT210005), FONDECYT 1220054 and 1181180, and a Meta Research PhD Fellowship.
A prophet inequality states, for some α ∈ [0, 1], that the expected value achievable by a gambler who sequentially observes random variables X1, . . . , Xn and … A prophet inequality states, for some α ∈ [0, 1], that the expected value achievable by a gambler who sequentially observes random variables X1, . . . , Xn and selects one of them is at least an α fraction of the maximum value in the sequence. We obtain three distinct improvements for a setting that was first studied by Correa et al. (EC, 2019) and is particularly relevant to modern applications in algorithmic pricing. In this setting, the random variables are i.i.d. from an unknown distribution and the gambler has access to an additional βn samples for some β ≥ 0. We first give improved lower bounds on α for a wide range of values of β; specifically, α ≥ (1 + β)/e when β ≤ 1/(e − 1), which is tight, and α ≥ 0.648 when β = 1, which improves on a bound of around 0.635 due to Correa et al. (SODA, 2020). Adding to their practical appeal, specifically in the context of algorithmic pricing, we then show that the new bounds can be obtained even in a streaming model of computation and thus in situations where the use of relevant data is complicated by the sheer amount of data available. We finally establish that the upper bound of 1/e for the case without samples is robust to additional information about the distribution, and applies also to sequences of i.i.d. random variables whose distribution is itself drawn, according to a known distribution, from a finite set of known candidate distributions. This implies a tight prophet inequality for exchangeable sequences of random variables, answering a question of Hill and Kertz (Contemporary Mathematics, 1992), but leaves open the possibility of better guarantees when the number of candidate distributions is small, a setting we believe is of strong interest to applications.
We survey the main results from [Dütting, Kesselheim, and Lucier 2020]: 1 a simple posted-price mechanism for subadditive combinatorial auctions with m items that achieves an O (log log m … We survey the main results from [Dütting, Kesselheim, and Lucier 2020]: 1 a simple posted-price mechanism for subadditive combinatorial auctions with m items that achieves an O (log log m ) approximation to the optimal welfare, plus a variant with entry fees that approximates revenue. These are based on a novel subadditive prophet inequality.
In the ordinal matroid secretary problem (MSP), candidates do not reveal numerical weights, but the decision maker can still discern if a candidate is better than another. An algorithm [Formula: … In the ordinal matroid secretary problem (MSP), candidates do not reveal numerical weights, but the decision maker can still discern if a candidate is better than another. An algorithm [Formula: see text] is probability-competitive if every element from the optimum appears with probability [Formula: see text] in the output. This measure is stronger than the standard utility competitiveness. Our main result is the introduction of a technique based on forbidden sets to design algorithms with strong probability-competitive ratios on many matroid classes. We improve upon the guarantees for almost every matroid class considered in the MSP literature. In particular, we achieve probability-competitive ratios of 4 for graphic matroids and of [Formula: see text] for laminar matroids. Additionally, we modify Kleinberg’s [Formula: see text] utility-competitive algorithm for uniform matroids of rank [Formula: see text] in order to obtain a [Formula: see text] probability-competitive algorithm. We also contribute algorithms for the ordinal MSP on arbitrary matroids.
We study the classical online bipartite matching problem: One side of the graph is known and vertices of the other side arrive online. It is well known that when the … We study the classical online bipartite matching problem: One side of the graph is known and vertices of the other side arrive online. It is well known that when the graph is edge-weighted, and vertices arrive in an adversarial order, no online algorithm has a nontrivial competitive-ratio. To bypass this hurdle we modify the rules such that the adversary still picks the graph but has to reveal a random part (say half) of it to the player. The remaining part is given to the player in an adversarial order. This models practical scenarios in which the online algorithm has some history to learn from. This way of modeling a history was formalized recently by the authors (SODA 20) and was called the AOS model (for Adversarial Online with a Sample). It allows developing online algorithms for the secretary problem that compete even when the secretaries arrive in an adversarial order. Here we use the same model to attack the much more challenging matching problem. We analyze a natural algorithmic framework that decides how to match an arriving vertex $v$ by applying an offline matching algorithm to $v$ and the sample. We get roughly $1/4$ of the maximum weight by applying the offline greedy matching algorithm to the sample and $v$. Our analysis ties the performance of this algorithm to the performance of the offline greedy matching on the online part and we also prove that it is tight. Surprisingly, when replacing greedy with an optimal algorithm for maximum matching, no constant competitive-ratio can be guaranteed when the size of the sample is comparable to the size of the online part. However, when the sample is quadratic in the size of the online part, we do get a competitive-ratio of $1/e$.
A celebrated impossibility result by Myerson and Satterthwaite (1983) shows that any truthful mechanism for two-sided markets that maximizes social welfare must run a deficit, resulting in a necessity to … A celebrated impossibility result by Myerson and Satterthwaite (1983) shows that any truthful mechanism for two-sided markets that maximizes social welfare must run a deficit, resulting in a necessity to relax welfare efficiency and the use of approximation mechanisms. Such mechanisms in general make extensive use of the Bayesian priors. In this work, we investigate a question of increasing theoretical and practical importance: how much prior information is required to design mechanisms with near-optimal approximations?
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA)The Two-Sided Game of Googol and Sample-Based Prophet InequalitiesJosé R. Correa, Andrés Cristi, Boris Epstein, … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA)The Two-Sided Game of Googol and Sample-Based Prophet InequalitiesJosé R. Correa, Andrés Cristi, Boris Epstein, and José A. SotoJosé R. Correa, Andrés Cristi, Boris Epstein, and José A. Sotopp.2066 - 2081Chapter DOI:https://doi.org/10.1137/1.9781611975994.127PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. In this paper we consider a variant of the problem and explore its connections to data-driven online selection. Specifically, we are given n cards with arbitrary nonnegative numbers written on both sides. The cards are randomly placed on n consecutive positions on a table, and for each card, the visible side is also selected at random. The player sees the visible side of all cards and wants to select the card with the maximum hidden value. To this end, the player flips the first card, sees its hidden value and decides whether to pick it or drop it and continue with the next card. We study algorithms for two natural objectives. In the first one, similar to the secretary problem, the player wants to maximize the probability of selecting the maximum hidden value. We show that this can be done with probability at least 0.45292. In the second objective, similar to the prophet inequality, the player wants to maximize the expectation of the selected hidden value. Here we show a guarantee of at least 0.63518 with respect to the expected maximum hidden value. Our algorithms result from combining three basic strategies. One is to stop whenever we see a value larger than the initial n visible numbers. The second one is to stop the first time the last flipped card's value is the largest of the currently n visible numbers in the table. And the third one is similar to the latter but to stop it additionally requires that the last flipped value is larger than the value on the other side of its card. We apply our results to the prophet secretary problem with unknown distributions, but with access to a single sample from each distribution. In particular, our guarantee improves upon 1 – 1/e for this problem, which is the currently best known guarantee and only works for the i.i.d. prophet inequality with samples. Previous chapter Next chapter RelatedDetails Published:2020eISBN:978-1-61197-599-4 https://doi.org/10.1137/1.9781611975994Book Series Name:ProceedingsBook Code:PRDA20Book Pages:xxii + 3011
A celebrated impossibility result by Myerson and Satterthwaite (1983) shows that any truthful mechanism for two-sided markets that maximizes social welfare must run a deficit, resulting in a necessity to … A celebrated impossibility result by Myerson and Satterthwaite (1983) shows that any truthful mechanism for two-sided markets that maximizes social welfare must run a deficit, resulting in a necessity to relax welfare efficiency and the use of approximation mechanisms. Such mechanisms in general make extensive use of the Bayesian priors. In this work, we investigate a question of increasing theoretical and practical importance: how much prior information is required to design mechanisms with near-optimal approximations? Our first contribution is a more general impossibility result stating that no meaningful approximation is possible without any prior information, expanding the famous impossibility result of Myerson and Satterthwaite. Our second contribution is that one {\em single sample} (one number per item), arguably a minimum-possible amount of prior information, from each seller distribution is sufficient for a large class of two-sided markets. We prove matching upper and lower bounds on the best approximation that can be obtained with one single sample for subadditive buyers and additive sellers, regardless of computational considerations. Our third contribution is the design of computationally efficient blackbox reductions that turn any one-sided mechanism into a two-sided mechanism with a small loss in the approximation, while using only one single sample from each seller. On the way, our blackbox-type mechanisms deliver several interesting positive results in their own right, often beating even the state of the art that uses full prior information.
We study the single-choice Prophet Inequality problem when the gambler is given access to samples. We show that the optimal competitive ratio of $1/2$ can be achieved with a single … We study the single-choice Prophet Inequality problem when the gambler is given access to samples. We show that the optimal competitive ratio of $1/2$ can be achieved with a single sample from each distribution. When the distributions are identical, we show that for any constant $\varepsilon > 0$, $O(n)$ samples from the distribution suffice to achieve the optimal competitive ratio ($\approx 0.745$) within $(1+\varepsilon)$, resolving an open problem of Correa, D\"utting, Fischer, and Schewior.
We consider Bayesian online selection problem of a matching in bipartite graphs, i.e., online weighted matching problem with edge arrivals where online algorithm knows distributions of weights, that corresponds to … We consider Bayesian online selection problem of a matching in bipartite graphs, i.e., online weighted matching problem with edge arrivals where online algorithm knows distributions of weights, that corresponds to the intersection of two matroids in [Kleinberg and Wienberg STOC 12] model. We consider a simple class of non adaptive vertex-additive policies that assign static prices to all vertices in the graph and accept each edge only if its weight exceeds the sum of the prices of the edge's endpoints. We show existence of a vertex-additive policy with the expected payoff of at least one third of the prophet's payoff and present gradient decent type algorithm that quickly converges to the desired vector of vertex prices. This improves the adaptive online policy of [Kleinberg and Wienberg STOC 12] for the intersection of two matroids in two ways: our policy is non adaptive and has better approximation guarantee of $3$ instead of previous guarantee of $5.82$ against the prophet. We give a complementary lower bound of $2.25$ for any online algorithm in the bipartite matching setting.
We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially … We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially gets to sample each of $N$ items independently with probability $p$, and can observe the relative rankings of these sampled items. Then, the DM faces the remaining items in an online fashion, observing the relative rankings of all revealed items. While scanning the sequence the DM makes irrevocable stop/continue decisions and her reward for stopping the sequence facing the item with rank $i$ is $Y_i$. The goal of the DM is to maximize her reward. We start by studying the case in which the values $Y_i$ are known to the DM, and then move to the case in which these values are adversarial. For the former case, we write the natural linear program that captures the performance of an algorithm, and take its continuous limit. We prove a structural result about this continuous limit, which allows us to reduce the problem to a relatively simple real optimization problem. We establish that the optimal algorithm is given by a sequence of thresholds $t_1\le t_2\le\cdots$ such that the DM should stop if seeing an item with current ranking $i$ after time $t_i$. Additionally we are able to recover several classic results in the area such as those for secretary problem and the minimum ranking problem. For the adversarial case, we obtain a similar linear program with an additional stochastic dominance constraint. Using the same machinery we are able to pin down the optimal competitive ratios for all values of $p$. Notably, we prove that as $p$ approaches 1, our guarantee converges linearly to 0.745, matching that of the i.i.d.~prophet inequality. Also interesting is the case $p=1/2$, where our bound evaluates to $0.671$, which improves upon the state of the art.