Analytic extensions of Starobinsky model of inflation

Type: Article

Publication Date: 2022-03-01

Citations: 43

DOI: https://doi.org/10.1088/1475-7516/2022/03/058

Abstract

Abstract We study several extensions of the Starobinsky model of inflation, which obey all observational constraints on the inflationary parameters, by demanding that both the inflaton scalar potential in the Einstein frame and the F ( R ) gravity function in the Jordan frame have the explicit dependence upon fields and parameters in terms of elementary functions. Our models are continuously connected to the original Starobinsky model via changing the parameters. We modify the Starobinsky ( R + R 2 ) model by adding an R 3 -term, an R 4 -term, and an R 3/2 -term, respectively, and calculate the scalar potentials, the inflationary observables and the allowed limits on the deformation parameters by using the latest observational bounds. We find that the tensor-to-scalar ratio in the Starobinsky model modified by the R 3/2 -term significantly increases with raising the parameter in front of that term. On the other side, we deform the scalar potential of the Starobinsky model in the Einstein frame in powers of y = exp(-√(2/3) ϕ / M Pl ), where ϕ is the canonical inflaton (scalaron) field, calculate the corresponding F ( R ) gravity functions in the two new cases, and find the restrictions on the deformation parameters in the lowest orders with respect to the variable y that is physically small during slow-roll inflation.

Locations

  • Journal of Cosmology and Astroparticle Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Institutional Repository of Leibniz Universität Hannover (Leibniz Universität Hannover) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ New one-parametric extension of the Starobinsky inflationary model 2022 E. O. Pozdeeva
S. Yu. Vernov
+ PDF Chat New one-parametric extension of the Starobinsky inflationary model 2023 E. O. Pozdeeva
S. Yu. Vernov
+ PDF Chat Nearly Starobinsky inflation from modified gravity 2014 Lorenzo Sebastiani
Guido Cognola
Ratbay Myrzakulov
Sergei D. Odintsov
Sergio Zerbini
+ Alternative approach to the Starobinsky model for inflation scenarios 2022 M. Chaichian
A. Ghal'e
M. Oksanen
+ PDF Chat Higher-order extension of Starobinsky inflation: Initial conditions, slow-roll regime, and reheating phase 2022 G. Rodrigues-da-Silva
Jeremias Bezerra Sobrinho
L. G. Medeiros
+ PDF Chat Alternative approach to the Starobinsky model for inflation scenarios 2023 Масуд Чайчиан
Amir Ghal’e
Markku Oksanen
+ A higher-order extension of Starobinsky inflation: initial conditions, slow-roll regime and reheating phase 2021 G. Rodrigues-da-Silva
J. Bezerra-Sobrinho
L. G. Medeiros
+ PDF Chat A simple $$F(\mathcal{R},\phi )$$ deformation of Starobinsky inflationary model 2020 Dhimiter D. Canko
Ioannis D. Gialamas
George P. Kodaxis
+ PDF Chat Unification of inflation and dark matter in the Higgs–Starobinsky model 2019 Daris Samart
Phongpichit Channuie
+ Modified Starobinsky inflation by the $R\ln\left( \square\right) R$ term 2022 J. Bezerra-Sobrinho
L. G. Medeiros
+ PDF Chat Starobinsky-like two-field inflation 2016 Sho Kaneda
Sergei V. Ketov
+ PDF Chat Reinterpretation of the Starobinsky model 2016 T. Asaka
Satoshi Iso
H. Kawai
Kazunori Kohri
Toshifumi Noumi
Takahiro Terada
+ Relaxation of hierarchy in higher-dimensional Starobinsky model 2019 Yu Asai
+ Relaxation of hierarchy in higher-dimensional Starobinsky model 2019 Yu Asai
+ BI model - An Extension of Starobinsky model induced by SUGRA 2019 Ping Kwan Man Ellgan
+ BI-extended model -- An Extension of Starobinsky model induced by SUGRA 2019 Ping Kwan Man Ellgan
+ Modified Starobinsky Inflation 2018 Seokcheon Lee
+ PDF Chat On the superstring-inspired quantum correction to the Starobinsky model of inflation 2022 Sergei V. Ketov
E. O. Pozdeeva
S. Yu. Vernov
+ PDF Chat Higher-order modified Starobinsky inflation 2019 R. R. Cuzinatto
L. G. Medeiros
P. J. Pompeia
+ PDF Chat Influence on Starobinsky inflation by other fields with large amplitude 2016 Shinta Kasuya
Kanto Moritake

Works Cited by This (46)

Action Title Year Authors
+ PDF Chat Bouncing inflation in a nonlinear<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mi>R</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:math>gravitational model 2010 Tamerlan Saidov
Alexander Zhuk
+ Pole inflation — Shift symmetry and universal corrections 2015 Benedict J. Broy
Mario Galante
Diederik Roest
Alexander Westphal
+ PDF Chat MODIFIED SUPERGRAVITY AND EARLY UNIVERSE: THE MEETING POINT OF COSMOLOGY AND HIGH-ENERGY PHYSICS 2013 Sergei V. Ketov
+ PDF Chat Curing singularities in cosmological evolution of<i>F</i>(<i>R</i>) gravity 2010 Stephen Appleby
Richard A. Battye
Alexei A. Starobinsky
+ PDF Chat Nearly Starobinsky inflation from modified gravity 2014 Lorenzo Sebastiani
Guido Cognola
Ratbay Myrzakulov
Sergei D. Odintsov
Sergio Zerbini
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>R</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>theories of gravity 2010 Thomas P. Sotiriou
Valerio Faraoni
+ PDF Chat Consistency relation for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>R</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math>inflation 2015 Hayato Motohashi
+ PDF Chat Disappearing cosmological constant in f(R) gravity 2007 Alexei A. Starobinsky
+ PDF Chat Minimal supergravity models of inflation 2013 S. Ferrara
Рената Каллош
Andrei Linde
Massimo Porrati
+ PDF Chat Embedding<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>R</mml:mi><mml:mo>+</mml:mo><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math>inflation in supergravity 2011 Sergei V. Ketov
Alexei A. Starobinsky