Microscopic piezoelectric behavior of clamped and membrane (001) PMN-30PT thin films

Type: Article

Publication Date: 2021-11-15

Citations: 7

DOI: https://doi.org/10.1063/5.0068581

Abstract

Bulk single-crystal relaxor-ferroelectrics, like Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), are widely known for their large piezoelectricity. This is attributed to polarization rotation, which is facilitated by the presence of various crystal symmetries for compositions near a morphotropic phase boundary. Relaxor-ferroelectric thin films, which are necessary for low-voltage applications, suffer a reduction in their piezoelectric response due to clamping by the passive substrate. To understand the microscopic behavior of this adverse phenomenon, we employ the AC electric field driven in-operando synchrotron x-ray diffraction on patterned device structures to investigate the piezoelectric domain behavior under an electric field for both a clamped (001) PMN-PT thin film on Si and a (001) PMN-PT membrane released from its substrate. In the clamped film, the substrate inhibits the field-induced rhombohedral (R) to tetragonal (T) phase transition resulting in a reversible R to Monoclinic (M) transition with a reduced longitudinal piezoelectric coefficient d33 < 100 pm/V. Releasing the film from the substrate results in recovery of the R to T transition and results in a d33 > 1000 pm/V. Using diffraction with spatial mapping, we find that lateral constraints imposed by the boundary between the active and inactive materials also inhibit the R to T transition. Phase-field calculations on both clamped and released PMN-PT thin films simulate our experimental findings. Resolving the suppression of thin film piezoelectric response is critical to their application in piezo-driven technologies.

Locations

  • Applied Physics Letters - View - PDF
  • arXiv (Cornell University) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Low-voltage magnetoelectric coupling in membrane heterostructures 2021 S. Lindemann
Julian Irwin
Gi‐Yeop Kim
Bo Wang
Kitae Eom
Jianjun Wang
Jia‐Mian Hu
Long‐Qing Chen
Si‐Young Choi
Chang‐Beom Eom
+ Low-Voltage Magnetoelectric Coupling in Membrane Heterostructures 2021 S. Lindemann
Julian Irwin
G. Y. Kim
Bo Wang
Kitae Eom
J. J. Wang
Jia‐Mian Hu
Long‐Qing Chen
Si‐Young Choi
Chang‐Beom Eom
+ Decoding the complexities of lead-based relaxor ferroelectrics 2019 Abinash Kumar
Jonathon N. Baker
Preston C. Bowes
Matthew J. Cabral
Shujun Zhang
Elizabeth C. Dickey
Douglas L. Irving
James M. LeBeau
+ In-plane quasi-single-domain BaTiO$_3$ via interfacial symmetry engineering 2021 J. W. Lee
Kitae Eom
Tula R. Paudel
B. Wang
Huihui Lu
Huaixun Huyan
S. Lindemann
So Hyeon Ryu
H. Lee
T. H. Kim
+ PDF Chat First-principles study of high-field piezoelectricity in tetragonal<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>PbTiO</mml:mtext></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> 2010 Anindya Roy
Massimiliano Stengel
David Vanderbilt
+ PDF Chat Piezoelectric response around ferroelectric domain walls in crystals with engineered domain configuration 2010 Haiyan Guo
Alexei A. Bokov
Zuo‐Guang Ye
+ PDF Chat Ideal barriers to polarization reversal and domain-wall motion in strained ferroelectric thin films 2009 Scott P. Beckman
Xinjie Wang
Karin M. Rabe
David Vanderbilt
+ PDF Chat First-principles study of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">PbTiO</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math>under uniaxial strains and stresses 2014 Henu Sharma
J. Kreisel
Philippe Ghosez
+ Heterogeneous field response of hierarchical polar laminates in relaxor ferroelectrics 2023 Hao Zheng
Tao Zhou
Dina Sheyfer
Jieun Kim
Jiyeob Kim
Travis D. Frazer
Zhonghou Cai
Martin V. Holt
Zhan Zhang
J. F. Mitchell
+ PDF Chat Properties of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Pb</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi mathvariant="normal">Zr</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="normal">Ti</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>ultrathin films under stress-free and open-circuit electrical boundary conditions 2004 Emad Almahmoud
Yulia Navtsenya
Igor Kornev
Huaxiang Fu
L. BellaĂŻche
+ Enhanced Ferroelectric Functionality in Flexible Lead Zirconate Titanate Films with In-Situ Substrate-Clamping Compensation 2019 Rachel Onn Winestook
CĂ©cile Saguy
Chun‐Hao Ma
Ying‐Hao Chu
Yachin Ivry
+ Enhanced Ferroelectric Functionality in Flexible Lead Zirconate Titanate Films with In-Situ Substrate-Clamping Compensation 2019 Rachel Onn Winestook
CĂ©cile Saguy
Chun‐Hao Ma
Ying‐Hao Chu
Yachin Ivry
+ PDF Chat Role of random electric fields in relaxors 2014 Daniel Phelan
Christopher Stock
J. A. Rodriguez‐Rivera
Songxue Chi
Juscelino B. LeĂŁo
Xifa Long
Yujuan Xie
Alexei A. Bokov
Zuo‐Guang Ye
Panchapakesan Ganesh
+ PDF Chat Phase-field modeling and electronic structural analysis of flexoelectric effect at 180° domain walls in ferroelectric PbTiO3 2017 Yujia Wang
Jiangyu Li
Yin‐Lian Zhu
Xiuliang Ma
+ PDF Chat In-plane quasi-single-domain BaTiO3 via interfacial symmetry engineering 2021 J. W. Lee
Kitae Eom
Tula R. Paudel
Bo Wang
Haidong Lu
Huaixun Huyan
S. Lindemann
Sangwoo Ryu
H. Lee
T. H. Kim
+ PDF Chat Heterogeneous field response of hierarchical polar laminates in relaxor ferroelectrics 2024 Hao Zheng
Tao Zhou
Dina Sheyfer
Jieun Kim
Jiyeob Kim
Travis D. Frazer
Zhonghou Cai
Martin V. Holt
Zhan Zhang
J. F. Mitchell
+ PDF Chat Pressure-induced switching in ferroelectrics: Phase-field modeling, electrochemistry, flexoelectric effect, and bulk vacancy dynamics 2017 Ye Cao
Anna N. Morozovska
Sergei V. Kalinin
+ PDF Chat Phase-field modeling of chemical control of polarization stability and switching dynamics in ferroelectric thin films 2016 Ye Cao
Sergei V. Kalinin
+ Magnetic microscopy and simulation of strain-mediated control of magnetization in Ni/PMN-PT nanostructures 2016 Ian Gilbert
Andres C. Chavez
D. T. Pierce
John Unguris
Wei-Yang Sun
Cheng-Yen Liang
Gregory P. Carman
+ PDF Chat Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure 2020 Xiaomei Li
Congbing Tan
Chang Liu
Peng Gao
Yuanwei Sun
Pan Chen
Mingqiang Li
Lei Liao
Ruixue Zhu
Jinbin Wang

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (6)

Action Title Year Authors
+ PDF Chat X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1∕3Nb2∕3)-0.3PbTiO3 crystal 2004 Feiming Bai
Naigang Wang
Jiefang Li
D. Viehland
P. M. Gehring
Guangyong Xu
G. Shirane
+ PDF Chat Phase diagram of the ferroelectric relaxor<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mn /><mml:mi>−</mml:mi><mml:mi>x</mml:mi><mml:mo>)</mml:mo><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">PbMg</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Nb</mml:mi></mml:mrow><mml:mrow><mml:mn>2</
 2002 Beatriz Noheda
D. E. Cox
G. Shirane
Jinghui Gao
Zuo‐Guang Ye
+ PDF Chat Polarization Rotation via a Monoclinic Phase in the Piezoelectric 92%<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>PbZn</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mi>/</mml:mi><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>Nb</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>/</mml:mi><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>O
 2001 Beatriz Noheda
D. E. Cox
G. Shirane
S.-E. Park
L. E. Cross
Z. Zhong
+ PDF Chat Evidence for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mi>B</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mi>C</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>phases in the morphotropic phase boundary region of<mml:math xmlns:mml="
 2003 Akhilesh Kumar Singh
Dhananjai Pandey
+ PDF Chat Magnetoelectric Coupling by Piezoelectric Tensor Design 2019 Julian Irwin
S. Lindemann
W. J. Maeng
J. J. Wang
V. Vaithyanathan
Jia‐Mian Hu
Long‐Qing Chen
Darrell G. Schlom
Chang‐Beom Eom
M. S. Rzchowski
+ PDF Chat Low-voltage magnetoelectric coupling in membrane heterostructures 2021 S. Lindemann
Julian Irwin
Gi‐Yeop Kim
Bo Wang
Kitae Eom
Jianjun Wang
Jia‐Mian Hu
Long‐Qing Chen
Si‐Young Choi
Chang‐Beom Eom