Type: Article
Publication Date: 2021-10-23
Citations: 15
DOI: https://doi.org/10.3390/sym13112014
In previous work it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for its $L$-function is valid to the right of the critical line $\Re (s) > \tfrac{1}{2}$, and the Riemann Hypothesis for this class of $L$-functions follows. Building on this work, here we propose how to extend this line of reasoning to the Riemann zeta function and other principal Dirichlet $L$-functions. We apply these results to the study of the argument of the zeta function. In another application, we define and study a 1-point correlation function of the Riemann zeros, which leads to the construction of a probabilistic model for them. Based on these results we describe a new algorithm for computing very high Riemann zeros, and we calculate the googol-th zero, namely $10^{100}$-th zero to over 100 digits, far beyond what is currently known.