On homotopy groups of spaces of embeddings of an arc or a circle: the Dax invariant

Type: Article

Publication Date: 2022-09-14

Citations: 3

DOI: https://doi.org/10.1090/tran/8805

Abstract

We compute in many classes of examples the first potentially interesting homotopy group of the space of embeddings of either an arc or a circle into a manifold <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of dimension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d greater-than-or-equal-to 4"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">d\geq 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a simply connected 4-manifold the fundamental group of both of these embedding spaces is isomorphic to the second homology group of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, answering a question posed by Arone and Szymik. The case <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d equals 3"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">d=3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> gives isotopy invariants of knots in a 3-manifold that are universal of Vassiliev type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="less-than-or-equal-to 1"> <mml:semantics> <mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\leq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and reduce to Schneiderman’s concordance invariant.

Locations

  • arXiv (Cornell University) - View - PDF
  • Transactions of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ On homotopy groups of spaces of embeddings of an arc or a circle: the Dax invariant 2021 Danica Kosanović
+ PDF Chat On the group of homotopy equivalences of a manifold 1996 Hans Joachim Baues
+ PDF Chat Circle actions and fundamental groups for homology 4-spheres 1982 Steven P. Plotnick
+ PDF Chat Homotopy groups of the space of self-homotopy-equivalences 1981 Darryl McCullough
+ PDF Chat Some homotopy properties of the homeomorphism groups of 𝑅^{∞} (𝑄^{∞})-manifolds 1987 Vo Thanh Liem
+ PDF Chat On the homotopy groups of one point union with a bouquet of circles 1978 Israel Berstein
E. Dror
+ PDF Chat Isometric homotopy in codimension two 1985 John Douglas Moore
+ PDF Chat Classification of circle actions on 4-manifolds 1978 Ronald Fintushel
+ PDF Chat On mapping class groups of contractible open 3-manifolds 1993 Robert C. Myers
+ PDF Chat Four-Manifolds With Surface Fundamental Groups 1997 Alberto Cavicchioli
Friedrich Hegenbarth
Dušan Repovš
+ Homotopy reductions of mappings into the circle 1944 G. T. Whyburn
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>S</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math>- and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>P</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math>-category of manifolds 2011 J. C. Gómez-Larrañaga
F. González-Acuña
Wolfgang Heil
+ Homotopy equivalences on 3-manifolds 1984 Gerard A. Venema
+ PDF Chat A homotopy classification of certain 7-manifolds 1997 Bernd Kruggel
+ On ℎ-cobordisms of spherical space forms 1999 Sławomir Kwasik
Reinhard Schultz
+ PDF Chat Classifying spaces and homotopy sets of axes of pairings 1996 Kenshi Ishiguro
+ Locally compact flows on connected manifolds 2021 Khadija Ben Rejeb
+ PDF Chat On the groups of inertia of smooth manifolds 1973 Adil G. Naoum
+ PDF Chat Diffeomorphisms of manifolds with finite fundamental group 1994 Georgia Triantafillou
+ PDF Chat Algebras of iterated path integrals and fundamental groups 1971 Kuo-tsai Chen