McKay Quivers and Lusztig Algebras of Some Finite Groups

Type: Article

Publication Date: 2021-10-13

Citations: 0

DOI: https://doi.org/10.1007/s10468-021-10099-x

Abstract

Abstract We are interested in the McKay quiver Γ( G ) and skew group rings A ∗ G , where G is a finite subgroup of GL( V ), where V is a finite dimensional vector space over a field K , and A is a K − G -algebra. These skew group rings appear in Auslander’s version of the McKay correspondence. In the first part of this paper we consider complex reflection groups $\mathsf {G} \subseteq \text {GL}(V)$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>G</mml:mi><mml:mo>⊆</mml:mo><mml:mtext>GL</mml:mtext><mml:mo>(</mml:mo><mml:mi>V</mml:mi><mml:mo>)</mml:mo></mml:math> and find a combinatorial method, making use of Young diagrams, to construct the McKay quivers for the groups G ( r , p , n ). We first look at the case G (1,1, n ), which is isomorphic to the symmetric group S n , followed by G ( r ,1, n ) for r &gt; 1. Then, using Clifford theory, we can determine the McKay quiver for any G ( r , p , n ) and thus for all finite irreducible complex reflection groups up to finitely many exceptions. In the second part of the paper we consider a more conceptual approach to McKay quivers of arbitrary finite groups: we define the Lusztig algebra $\widetilde {A}(\mathsf {G})$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mover><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mo>~</mml:mo></mml:mover><mml:mo>(</mml:mo><mml:mi>G</mml:mi><mml:mo>)</mml:mo></mml:math> of a finite group $\mathsf {G} \subseteq \text {GL}(V)$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>G</mml:mi><mml:mo>⊆</mml:mo><mml:mtext>GL</mml:mtext><mml:mo>(</mml:mo><mml:mi>V</mml:mi><mml:mo>)</mml:mo></mml:math> , which is Morita equivalent to the skew group ring A ∗ G . This description gives us an embedding of the basic algebra Morita equivalent to A ∗ G into a matrix algebra over A .

Locations

  • Algebras and Representation Theory - View - PDF

Similar Works

Action Title Year Authors
+ McKay quivers and Lusztig algebras of some finite groups 2020 Ragnar-Olaf Buchweitz
Eleonore Faber
Colin Ingalls
Matthew W. Lewis
+ McKay quivers and Lusztig algebras of some finite groups 2020 Ragnar-Olaf Buchweitz
Eleonore Faber
Colin Ingalls
Matthew A. Lewis
+ PDF Chat $$G(\ell ,k,d)$$ G ( ℓ , k , d ) -modules via groupoids 2015 Volodymyr Mazorchuk
Catharina Stroppel
+ G(l,k,d)-modules via groupoids 2014 Volodymyr Mazorchuk
Catharina Stroppel
+ G(l,k,d)-modules via groupoids 2014 Volodymyr Mazorchuk
Catharina Stroppel
+ Real McKay Correspondence: KR-Theory of Graded Kleinian Groups 2022 Jon Cheah
+ PDF Chat McKay centralizer algebras 2016 Jeffrey M. Barnes
Georgia Benkart
Tom Halverson
+ Crossed product Leavitt path algebras 2020 Roozbeh Hazrat
Lia Vaš
+ Crossed product Leavitt path algebras 2020 Roozbeh Hazrat
Lia Vaš
+ PDF Chat Representations of Path Algebras with Applications to Subgroup Lattices and Group Characters 2014 Nobuo Iiyori
Masato Sawabe
+ Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups 2006 Shemsi I. Alhaddad
+ PDF Chat Subregular J-rings of Coxeter systems via quiver path algebras 2022 Ivan Dimitrov
Charles Paquette
David L. Wehlau
Tianyuan Xu
+ PDF Chat Structure of blocks with normal defect and abelian inertial quotient 2023 David J. Benson
Radha Kessar
Markus Linckelmann
+ Subregular $J$-rings of Coxeter systems via quiver path algebras 2021 Ivan Dimitrov
Charles Paquette
David L. Wehlau
Tianyuan Xu
+ McKay quivers of the groups G(r, m, n) 2018 Matthew W. Lewis
+ Structure of blocks with normal defect and abelian $p'$ inertial quotient 2022 David J. Benson
Radha Kessar
Markus Linckelmann
+ PDF Chat Centralisers, complex reflection groups and actions in the Weyl group $$E_6$$ 2023 Graham A. Niblo
Roger Plymen
Nick Wright
+ PDF Chat Kostka polynomials of $G(\ell,1,m)$ 2024 Syu Kato
+ Quivers of groups with normal <i> <sub>p</sub> </i>-subgroups 1999 Mary Schaps
+ PDF Chat On McKay quivers and covering spaces 2011 Jin-Yun Guo

Works That Cite This (0)

Action Title Year Authors