Type: Article
Publication Date: 2021-09-27
Citations: 3
DOI: https://doi.org/10.1007/s00208-021-02268-6
Abstract We investigate the norm of a degree 2 Siegel modular form of asymptotically large weight whose argument is restricted to the 3-dimensional subspace of its imaginary part. On average over Saito–Kurokawa lifts an asymptotic formula is established that is consistent with the mass equidistribution conjecture on the Siegel upper half space as well as the Lindelöf hypothesis for the corresponding Koecher–Maaß series. The ingredients include a new relative trace formula for pairs of Heegner periods.