Stable broken 𝐻(𝑐𝑢𝑟𝑙) polynomial extensions and 𝑝-robust a posteriori error estimates by broken patchwise equilibration for the curl–curl problem

Type: Article

Publication Date: 2021-09-28

Citations: 11

DOI: https://doi.org/10.1090/mcom/3673

Locations

  • Mathematics of Computation - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Stable broken H(curl) polynomial extensions and p-robust a posteriori error estimates by broken patchwise equilibration for the curl-curl problem 2020 Théophile Chaumont-Frelet
Alexandre Ern
Martin Vohralı́k
+ PDF Chat Stable broken H(curl) polynomial extensions and p-robust quasi-equilibrated a posteriori estimators for Maxwell's equations 2020 Théophile Chaumont-Frelet
Alexandre Ern
Martin Vohralı́k
+ Stable broken $H^1$ and $H(\mathrm {div})$ polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions 2019 Alexandre Ern
Martin Vohralı́k
+ \(p\) -Robust Equilibrated Flux Reconstruction in \(\boldsymbol{H}(\textrm{curl})\) Based on Local Minimizations: Application to a Posteriori Analysis of the Curl-Curl Problem 2023 Théophile Chaumont-Frelet
Martin Vohralı́k
+ A simple equilibration procedure leading to polynomial-degree-robust a posteriori error estimators for the curl-curl problem 2021 T. Chaumont-Frelet
+ A simple equilibration procedure leading to polynomial-degree-robust a posteriori error estimators for the curl-curl problem 2023 T. Chaumont-Frelet
+ PDF Chat p-robust equilibrated flux reconstruction in H(curl) based on local minimizations. Application to a posteriori analysis of the curl-curl problem 2021 Théophile Chaumont-Frelet
Martin Vohralı́k
+ Polynomial-degree-robust H(curl)-stability of discrete minimization in a tetrahedron 2020 Théophile Chaumont-Frelet
Alexandre Ern
Martin Vohralı́k
+ Polynomial-degree-robust H(curl)-stability of discrete minimization in a tetrahedron 2020 Théophile Chaumont-Frelet
Alexandre Ern
Martin Vohralı́k
+ $p$-robust equilibrated flux reconstruction in ${\boldsymbol H}(\mathrm{curl})$ based on local minimizations. Application to a posteriori analysis of the curl-curl problem 2021 Théophile Chaumont-Frelet
Martin Vohralı́k
+ $p$-robust equilibrated flux reconstruction in ${\boldsymbol H}(\mathrm{curl})$ based on local minimizations. Application to a posteriori analysis of the curl-curl problem. 2021 Théophile Chaumont-Frelet
Martin Vohralı́k
+ Constrained and unconstrained stable discrete minimizations for p-robust local reconstructions in vertex patches in the de Rham complex 2022 Théophile Chaumont-Frelet
Martin Vohralı́k
+ A stable local commuting projector and optimal $hp$ approximation estimates in ${\boldsymbol H}(\mathrm{curl})$ 2022 Théophile Chaumont-Frelet
Martin Vohralı́k
+ An equilibrated estimator for mixed finite element discretizations of the curl-curl problem 2023 T. Chaumont-Frelet
+ Inexpensive polynomial-degree-robust equilibrated flux a posteriori estimates for isogeometric analysis 2022 Gregor Gantner
Martin Vohralı́k
+ Adaptive VEM: Stabilization-Free A Posteriori Error Analysis and Contraction Property 2021 Luís Veiga
C. Canuto
R. H. Nochetto
Giuseppe Vacca
M. Verani
+ An equilibrated estimator for mixed finite element discretizations of the curl-curl problem 2024 Théophile Chaumont-Frelet
+ Superconvergent recovery operators: Derivative recovery techniques 2017 Asif Lakhany
J. R. Whiteman
+ PDF Chat Guaranteed contraction of adaptive inexact <i>hp</i>-refinement strategies with realistic stopping criteria 2022 Patrik Daniel
Martin Vohralı́k
+ An Introduction to Meshfree Methods and Their Programming 2005 G.R. Liu
Yuantong Gu