Cardinalities of prime spectra of precompletions

Type: Other

Publication Date: 2021-01-01

Citations: 1

DOI: https://doi.org/10.1090/conm/773/15538

Abstract

Given a complete local (Noetherian) ring <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we find necessary and sufficient conditions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that there exists a local domain <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue upper A EndAbsoluteValue greater-than StartAbsoluteValue upper T EndAbsoluteValue"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>T</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">|A| &gt; |T|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingAbove upper A With caret equals upper T"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\widehat {A} = T</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingAbove upper A With caret"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding="application/x-tex">\widehat {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes the completion of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to its maximal ideal. We then find necessary and sufficient conditions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that there exists a domain <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingAbove upper A With caret equals upper T"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\widehat {A} = T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue normal upper S normal p normal e normal c left-parenthesis upper A right-parenthesis EndAbsoluteValue greater-than StartAbsoluteValue normal upper S normal p normal e normal c left-parenthesis upper T right-parenthesis EndAbsoluteValue"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">S</mml:mi> <mml:mi mathvariant="normal">p</mml:mi> <mml:mi mathvariant="normal">e</mml:mi> <mml:mi mathvariant="normal">c</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">S</mml:mi> <mml:mi mathvariant="normal">p</mml:mi> <mml:mi mathvariant="normal">e</mml:mi> <mml:mi mathvariant="normal">c</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">|\mathrm {Spec}(A)| &gt; |\mathrm {Spec}(T)|</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, we use “partial completions” to create local rings <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingAbove upper A With caret equals upper T"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\widehat {A} = T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper S normal p normal e normal c left-parenthesis upper A right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">S</mml:mi> <mml:mi mathvariant="normal">p</mml:mi> <mml:mi mathvariant="normal">e</mml:mi> <mml:mi mathvariant="normal">c</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {Spec}(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has varying cardinality in different varieties.

Locations

  • Contemporary mathematics - American Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Noetherian subsets of prime spectra 1983 Charles C. Hanna
Jon L. Johnson
+ PDF Chat A local characterization of Noetherian and Dedekind rings 1985 Yves Lequain
+ PDF Chat Finite correspondence of spectra in Noetherian ring extensions 1992 Edward S. Letzter
+ PDF Chat Extensions of primes, flatness, and intersection flatness 2021 Melvin Hochster
Jack Jeffries
+ PDF Chat Locally noetherian commutative rings 1971 William Heinzer
Jack Ohm
+ PDF Chat Chain of prime ideals in formal power series rings 1983 Ada Maria de Souza Doering
Yves Lequain
+ PDF Chat Unimodular commutators 1987 Morris Newman
+ PDF Chat Prime rings with involution whose symmetric zero-divisors are nilpotent 1973 P. M. Cohn
+ PDF Chat Noetherian domains with many more elements than height-one primes 1995 D. D. Anderson
+ Roots of unity in 𝐾(𝑛)-local rings 2019 Sanath K. Devalapurkar
+ PDF Chat Krull dimension and reflexivity in some Noetherian rings 1981 A. Haghany
Bharat Sarath
+ Sequences of monoidal transformations of a regular noetherian local domain 2020 Ángel Granja
+ PDF Chat Maximal ideals in Laurent polynomial rings 1992 Budh Nashier
+ PDF Chat Comaximizable primes 1991 Raymond C. Heitmann
Stephen McAdam
+ PDF Chat Coefficient ideals 1991 Kishor Shah
+ PDF Chat The maximum condition on annihilators for polynomial rings 1998 Ferran Cedó
Dolors Herbera
+ Length, multiplicity, and multiplier ideals 2006 Tommaso de Fernex
+ PDF Chat Rumely’s local global principle for algebraic 𝑃𝒮𝒞 fields over rings 1998 Moshe Jarden
Aharon Razon
+ Existence of unliftable modules 1999 David A. Jorgensen
+ The homotopy fixed point spectra of profinite Galois extensions 2010 Mark Behrens
Daniel Davis