Type: Other
Publication Date: 2021-01-01
Citations: 1
DOI: https://doi.org/10.1090/conm/773/15538
Given a complete local (Noetherian) ring <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we find necessary and sufficient conditions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that there exists a local domain <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue upper A EndAbsoluteValue greater-than StartAbsoluteValue upper T EndAbsoluteValue"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>T</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">|A| > |T|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingAbove upper A With caret equals upper T"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\widehat {A} = T</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingAbove upper A With caret"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding="application/x-tex">\widehat {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes the completion of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to its maximal ideal. We then find necessary and sufficient conditions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that there exists a domain <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingAbove upper A With caret equals upper T"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\widehat {A} = T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue normal upper S normal p normal e normal c left-parenthesis upper A right-parenthesis EndAbsoluteValue greater-than StartAbsoluteValue normal upper S normal p normal e normal c left-parenthesis upper T right-parenthesis EndAbsoluteValue"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">S</mml:mi> <mml:mi mathvariant="normal">p</mml:mi> <mml:mi mathvariant="normal">e</mml:mi> <mml:mi mathvariant="normal">c</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">S</mml:mi> <mml:mi mathvariant="normal">p</mml:mi> <mml:mi mathvariant="normal">e</mml:mi> <mml:mi mathvariant="normal">c</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">|\mathrm {Spec}(A)| > |\mathrm {Spec}(T)|</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, we use “partial completions” to create local rings <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingAbove upper A With caret equals upper T"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\widehat {A} = T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper S normal p normal e normal c left-parenthesis upper A right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">S</mml:mi> <mml:mi mathvariant="normal">p</mml:mi> <mml:mi mathvariant="normal">e</mml:mi> <mml:mi mathvariant="normal">c</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {Spec}(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has varying cardinality in different varieties.