On the discretised ABC sum-product problem

Type: Article

Publication Date: 2023-12-20

Citations: 1

DOI: https://doi.org/10.1090/tran/9094

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0 greater-than beta less-than-or-equal-to alpha greater-than 1"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>β</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">0 &gt; \beta \leq \alpha &gt; 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="kappa greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>κ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\kappa &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. I prove that there exists <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="eta greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\eta &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the following holds for every pair of Borel sets <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A comma upper B subset-of double-struck upper R"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo>⊂</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">A,B \subset \mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="dimension Subscript normal upper H Baseline upper A equals alpha"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>dim</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>⁡</mml:mo> <mml:mi>A</mml:mi> <mml:mo>=</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\dim _{\mathrm {H}} A = \alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="dimension Subscript normal upper H Baseline upper B equals beta"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>dim</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>⁡</mml:mo> <mml:mi>B</mml:mi> <mml:mo>=</mml:mo> <mml:mi>β</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\dim _{\mathrm {H}} B = \beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: <disp-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="dimension Subscript normal upper H Baseline left-brace right-brace colon element-of element-of cR colon less-than-or-equal-to less-than-or-equal-to of dimdimH left-parenthesis right-parenthesis plus plus upper A times times cB plus plus alpha eta less-than-or-equal-to StartFraction alpha minus beta Over 1 minus beta EndFraction plus kappa period"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>dim</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>⁡</mml:mo> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>c</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>dim</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>⁡</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>+</mml:mo> <mml:mi>c</mml:mi> <mml:mi>B</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≤</mml:mo> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mi>η</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> <mml:mo>≤</mml:mo> <mml:mstyle displaystyle="false" scriptlevel="0"> <mml:mfrac> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>−</mml:mo> <mml:mi>β</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mi>β</mml:mi> </mml:mrow> </mml:mfrac> </mml:mstyle> <mml:mo>+</mml:mo> <mml:mi>κ</mml:mi> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\begin{equation*} \dim _{\mathrm {H}} \{c \in \mathbb {R}: \dim _{\mathrm {H}} (A + cB) \leq \alpha + \eta \} \leq \tfrac {\alpha - \beta }{1 - \beta } + \kappa . \end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> This extends a result of Bourgain from 2010, which contained the case <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha equals beta"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mi>β</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\alpha = \beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The paper also contains a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="delta"> <mml:semantics> <mml:mi>δ</mml:mi> <mml:annotation encoding="application/x-tex">\delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-discretised, and somewhat stronger, version of the estimate above, and new information on the size of long sums of the form <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a 1 upper B plus ellipsis plus a Subscript n Baseline upper B"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>a</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mi>B</mml:mi> <mml:mo>+</mml:mo> <mml:mo>…</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">a_{1}B + \ldots + a_{n}B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Jyväskylä University Digital Archive (University of Jyväskylä) - View - PDF
  • Transactions of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ PDF Chat On an 𝐿₁-approximation problem 1985 András Kroó
+ PDF Chat Relations between 𝐻^{𝑝}ᵤ and 𝐿^{𝑝}ᵤ in a product space 1989 Jan-Olov Strömberg
Richard L. Wheeden
+ PDF Chat On 𝐶^{𝑚} rational approximation 1986 Joan Verdera
+ PDF Chat Completeness of {𝑠𝑖𝑛𝑛𝑥+𝐾𝑖 𝑐𝑜𝑠𝑛𝑥} 1971 Jonathan I. Ginsberg
+ PDF Chat A Dowker product 1985 Amer Bešlagić
+ PDF Chat The three-space problem for 𝐿¹ 1990 Michel Talagrand
+ PDF Chat A two-parameter “Bergman space” inequality 1997 Jeremy M. Wilson
+ PDF Chat On a rectangle inclusion problem 1995 Janusz Pawlikowski
+ Real 3𝑥+1 2004 Michał Misiurewicz
Ana Rodrigues
+ PDF Chat The 𝑆𝑈𝑃=𝑀𝐴𝑋 problem for 𝛿 1987 Andrew J. Berner
István Juhász
+ PDF Chat Monotone 𝐿₁-approximation on the unit 𝑛-cube 1985 R. B. Darst
Robert Huotari
+ PDF Chat An integral inequality 1991 J. Ernest Wilkins
+ Compendium of Formulas 2021 David J. Griffiths
David Derbes
Richard B. Sohn
+ Generalized interpolation in 𝐻^{∞} with a complexity constraint 2004 Christopher I. Byrnes
Tryphon T. Georgiou
Anders Lindquist
Alexander Megretski
+ PDF Chat Packing dimension and Cartesian products 1996 Christopher J. Bishop
Yuval Peres
+ A note on the interior and dimensions of typical sumsets 2023 Jian-Ci Xiao
+ PDF Chat 𝐶*-extreme points 1981 Alan Hopenwasser
Robert L. Moore
Vern I. Paulsen
+ PDF Chat The calculation of best linear one-sided 𝐿_{𝑝} approximations 1973 G. A. Watson
+ PDF Chat Some extremal problems in 𝐿^{𝑝}(𝑤) 1998 Raymond Cheng
A. G. Miamee
M. Pourahmadi
+ PDF Chat The commutant of a certain compression 1993 William T. Ross