Starlikeness of certain non-univalent functions

Type: Article

Publication Date: 2021-09-18

Citations: 7

DOI: https://doi.org/10.1007/s13324-021-00600-6

Abstract

Abstract We consider three classes of functions defined using the class $${\mathcal {P}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi></mml:math> of all analytic functions $$p(z)=1+cz+\cdots $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mo>(</mml:mo><mml:mi>z</mml:mi><mml:mo>)</mml:mo><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mi>c</mml:mi><mml:mi>z</mml:mi><mml:mo>+</mml:mo><mml:mo>⋯</mml:mo></mml:mrow></mml:math> on the open unit disk having positive real part and study several radius problems for these classes. The first class consists of all normalized analytic functions f with $$f/g\in {\mathcal {P}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi><mml:mo>/</mml:mo><mml:mi>g</mml:mi><mml:mo>∈</mml:mo><mml:mi>P</mml:mi></mml:mrow></mml:math> and $$g/(zp)\in {\mathcal {P}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>g</mml:mi><mml:mo>/</mml:mo><mml:mo>(</mml:mo><mml:mi>z</mml:mi><mml:mi>p</mml:mi><mml:mo>)</mml:mo><mml:mo>∈</mml:mo><mml:mi>P</mml:mi></mml:mrow></mml:math> for some normalized analytic function g and $$p\in {\mathcal {P}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mo>∈</mml:mo><mml:mi>P</mml:mi></mml:mrow></mml:math> . The second class is defined by replacing the condition $$f/g\in {\mathcal {P}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi><mml:mo>/</mml:mo><mml:mi>g</mml:mi><mml:mo>∈</mml:mo><mml:mi>P</mml:mi></mml:mrow></mml:math> by $$|(f/g)-1|&lt;1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>|</mml:mo><mml:mo>(</mml:mo><mml:mi>f</mml:mi><mml:mo>/</mml:mo><mml:mi>g</mml:mi><mml:mo>)</mml:mo><mml:mo>-</mml:mo><mml:mn>1</mml:mn><mml:mo>|</mml:mo><mml:mo>&lt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> while the other class consists of normalized analytic functions f with $$f/(zp)\in {\mathcal {P}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi><mml:mo>/</mml:mo><mml:mo>(</mml:mo><mml:mi>z</mml:mi><mml:mi>p</mml:mi><mml:mo>)</mml:mo><mml:mo>∈</mml:mo><mml:mi>P</mml:mi></mml:mrow></mml:math> for some $$p\in {\mathcal {P}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mo>∈</mml:mo><mml:mi>P</mml:mi></mml:mrow></mml:math> . We have determined radii so that the functions in these classes to belong to various subclasses of starlike functions. These subclasses includes the classes of starlike functions of order $$\alpha $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> , parabolic starlike functions, as well as the classes of starlike functions associated with lemniscate of Bernoulli, reverse lemniscate, sine function, a rational function, cardioid, lune, nephroid and modified sigmoid function.

Locations

  • Analysis and Mathematical Physics - View - PDF

Similar Works

Action Title Year Authors
+ Starlikeness of Certain Non-Univalent Functions 2020 Adam Lecko
V. Ravichandran
Asha Sebastian
+ Starlikeness of Certain Non-Univalent Functions 2020 Adam Lecko
V. Ravichandran
Asha Sebastian
+ Radius of starlikeness for some classes containing non-univalent functions 2021 Shalu Yadav
Kanika Sharma
V. Ravichandran
+ PDF Chat Theory of Certain Non-Univalent Analytic Functions 2023 Kamaljeet Gangania
+ PDF Chat Radius of starlikeness for some classes containing non-univalent functions 2021 Shalu Yadav
Kanika Sharma
V. Ravichandran
+ Radius problems for univalent functions 2020 Janusz Sokół
Katarzyna Trąbka-Więcław
+ PDF Chat On Some Subclasses of Strongly Starlike Analytic Functions 2020 El Moctar Ould Beiba
+ PDF Chat On a successive property of strongly starlikeness for multivalent functions 2019 Mamoru Nunokawa
Janusz Sokół
+ A Novel Class of Starlike Functions 2021 S. Sivaprasad Kumar
Shagun Banga
+ PDF Chat Strongly Starlike Functions and Related Classes 2021 Mamoru Nunokawa
Janusz Sokół
+ Theory of certain Non-Univalent Analytic functions 2022 Kamaljeet Gangania
+ On a Class of Certain Non-univalent Functions 2024 S. Sivaprasad Kumar
Pooja Yadav
+ Starlikeness of certain analytic functions 2020 Ahmad Sulaiman Ahmad El-Faqeer
Maisarah Haji Mohd
V. Ravichandran
Shamani Supramaniam
+ Starlikeness of certain analytic functions 2020 Ahmad Sulaiman Ahmad El-Faqeer
Maisarah Haji Mohd
V. Ravichandran
Shamani Supramaniam
+ PDF Chat A class of univalent functions 1998 Milutin Obradović
+ On a Class of certain Non-Univalent Functions 2022 S. Sivaprasad Kumar
Pooja Yadav
+ Starlikeness for Certain Close-to-Star Functions 2020 R. Kanaga
V. Ravichandran
+ Star-likeness associated with the exponential function 2019 Adiba Naz
Sumit Nagpal
V. Ravichandran
+ Starlikeness Associated With The Exponential Function 2019 Adiba Naz
Sumit Nagpal
V. Ravichandran
+ PDF Chat Radius of starlikeness of convex combinations of univalent starlike functions 1980 David Hamilton
P. D. Tuan