Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions
Jean‐Luc Marichal
,
Naïm Zénaïdi
Type:
Preprint
Publication Date:
2020-09-30
Citations:
0
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions
2022
Jean‐Luc Marichal
Naïm Zénaïdi
+
PDF
Chat
A generalization of Bohr–Mollerup’s theorem for higher order convex functions: a tutorial
2023
Jean‐Luc Marichal
Naïm Zénaïdi
+
A generalization of Bohr-Mollerup's theorem for higher order convex functions: a tutorial
2022
Jean‐Luc Marichal
Naïm Zénaïdi
+
A generalization of Krull-Webster's theory to higher order convex functions: multiple gamma-type functions
2020
Jean‐Luc Marichal
Naïm Zénaïdi
+
Convexity in the Theory of the Gamma Function
2007
Milan Merkle
+
Convexity Properties and Inequalities Concerning the (<em>p</em>,<em>k</em>)-Gamma function
2017
Kwara Nantomah
+
Convexity properties and inequalities concerning the (p; k)-gamma function
2017
Nantomah Kwara
+
Convexity properties and inequalities regarding the q-Gamma function
2022
Hashimu Mohammed
Abdul Razak Yaabia Abdulai
Hatsu Edo
+
About Some Theorems of Bohr-Mollerup Type
2015
Andrei Vernescu
+
A convexity property and a new characterization of Euler’s gamma function
2013
Horst Alzer
Janusz Matkowski
+
PDF
Chat
Summary of the Main Results
2022
Jean‐Luc Marichal
Naïm Zénaïdi
+
Geometrical convexity and generalizations of the Bohr-Mollerup theorem on the gamma function.
1993
Detlef Gronau
Janusz Matkowski
+
Convexity and Gamma function
1999
Josip Pečarić
Giampietro Allasia
Carla Giordano
+
PDF
Chat
Applications to Some Standard Special Functions
2022
Jean‐Luc Marichal
Naïm Zénaïdi
+
The Gamma Function
2021
Charles H. C. Little
Kee L. Teo
Bruce van Brunt
+
Special Functions
1999
George E. Andrews
Richard Askey
Ranjan Roy
+
Convexity in the Theory of the Gamma Function
1978
Hans-Heinrich Kairies
+
A note on convexity properties of functions related to the Hurwitz zeta and alternating Hurwitz zeta function
2020
Djurdje Cvijović
+
Topics from Classical Analysis: The Gamma-Function and the Euler–Maclaurin Formula
2017
Michael Field
+
On a generalized gamma function and its properties
2021
Gregory Abe-I-Kpeng
Mohammed Muniru Iddrisu
Kwara Nantomah
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (65)
Action
Title
Year
Authors
+
An Introduction to the Theory of Functional Equations and Inequalities
2009
Marek Kuczma
+
An Introduction to the Theory of Functional Equations and Inequalities: Cauchy's Equation and Jensen's Inequality
2008
Marek Kuczma
+
Functional equations in a single variable
1968
Marek Kuczma
+
Expansions of generalized Euler's constants into the series of polynomials in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>and into the formal enveloping series with rational coefficients only
2015
Iaroslav V. Blagouchine
+
Directional convexity and characterizations of Beta and Gamma functions
2015
Martin Himmel
Janu sz Matkowski
+
Vorlesungen über Differenzenrechnung
1924
Niels Erik Nörlund
+
PDF
Chat
Some characterizations of the Euler gamma function
2015
Janusz Matkowski
+
Inequalities and asymptotic expansions for the gamma function related to Mortici's formula
2015
Chao-Ping Chen
Long Lin
+
Bemerkungen zur Differenzengleichung <i>g</i>(<i>x</i> + 1) – <i>g</i>(<i>x</i>) = φ (<i>x</i>). II
1949
Wolfgang Krull
+
An Elementary Proof of Binet's Formula for the Gamma Function
1999
Zoltán Sasvári