A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions

Type: Preprint

Publication Date: 2020-09-30

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions 2022 Jean‐Luc Marichal
Naïm Zénaïdi
+ PDF Chat A generalization of Bohr–Mollerup’s theorem for higher order convex functions: a tutorial 2023 Jean‐Luc Marichal
Naïm Zénaïdi
+ A generalization of Bohr-Mollerup's theorem for higher order convex functions: a tutorial 2022 Jean‐Luc Marichal
Naïm Zénaïdi
+ A generalization of Krull-Webster's theory to higher order convex functions: multiple gamma-type functions 2020 Jean‐Luc Marichal
Naïm Zénaïdi
+ Convexity in the Theory of the Gamma Function 2007 Milan Merkle
+ Convexity Properties and Inequalities Concerning the (<em>p</em>,<em>k</em>)-Gamma function 2017 Kwara Nantomah
+ Convexity properties and inequalities concerning the (p; k)-gamma function 2017 Nantomah Kwara
+ Convexity properties and inequalities regarding the q-Gamma function 2022 Hashimu Mohammed
Abdul Razak Yaabia Abdulai
Hatsu Edo
+ About Some Theorems of Bohr-Mollerup Type 2015 Andrei Vernescu
+ A convexity property and a new characterization of Euler’s gamma function 2013 Horst Alzer
Janusz Matkowski
+ PDF Chat Summary of the Main Results 2022 Jean‐Luc Marichal
Naïm Zénaïdi
+ Geometrical convexity and generalizations of the Bohr-Mollerup theorem on the gamma function. 1993 Detlef Gronau
Janusz Matkowski
+ Convexity and Gamma function 1999 Josip ‎Pečarić
Giampietro Allasia
Carla Giordano
+ PDF Chat Applications to Some Standard Special Functions 2022 Jean‐Luc Marichal
Naïm Zénaïdi
+ The Gamma Function 2021 Charles H. C. Little
Kee L. Teo
Bruce van Brunt
+ Special Functions 1999 George E. Andrews
Richard Askey
Ranjan Roy
+ Convexity in the Theory of the Gamma Function 1978 Hans-Heinrich Kairies
+ A note on convexity properties of functions related to the Hurwitz zeta and alternating Hurwitz zeta function 2020 Djurdje Cvijović
+ Topics from Classical Analysis: The Gamma-Function and the Euler–Maclaurin Formula 2017 Michael Field
+ On a generalized gamma function and its properties 2021 Gregory Abe-I-Kpeng
Mohammed Muniru Iddrisu
Kwara Nantomah

Works That Cite This (0)

Action Title Year Authors