Ambiguous Ideal Classes and Quadratic Reciprocity

Type: Book-Chapter

Publication Date: 2021-01-01

Citations: 1

DOI: https://doi.org/10.1007/978-3-030-78652-6_9

Locations

  • Springer undergraduate mathematics series - View

Similar Works

Action Title Year Authors
+ PDF Chat On reciprocity equivalence of quadratic number fields 1991 Alfred Czogała
+ Lower Bound for Ideal Class Numbers of Real Quadratic Function Fields 2000 å¼ č“¤ē§‘
ēŽ‹é²²é¹
+ Class number indivisibility for quadratic function fields 2010 Siman Wong
+ Ternary quadratic forms over number fields with small class number 2014 Markus Kirschmer
David Lorch
+ A Note on the Ideal Class Number Problem for Quadratic Function Fields 2010 Hu Zong
+ Imaginary quadratic fields with noncyclic ideal class groups 2006 Dongho Byeon
+ Reciprocity in Algebraic Number Fields 1951 William Hobson Mills
+ Quadratic algebraic function fields with ideal class number two 2012 Dominique Le Brigand
+ V.28 From Quadratic Reciprocity to Class Field Theory 2010 Kiran S. Kedlaya
+ Quadratic Reciprocity: Its Conjecture and Application 1988 David A. Cox
+ PDF Chat Quadratic irrationals, ambiguous classes and symmetry in real quadratic fields 1994 R. A. Mollin
+ Additive prime number theory in real quadratic fields 1940 Albert Leon Whiteman
+ The quadratic analogue of serreā€™s conjecture 1978 T. Y. Lam
+ Indivisibility of class numbers of real quadratic function fields 2016 Jungyun Lee
Yoonjin Lee
+ Cyclotomic Number Theory: Roots and Reciprocity 2022 Cam McLeman
Erin McNicholas
Colin Starr
+ PDF Chat Ambiguous classes in quadratic fields 1993 R. A. Mollin
+ PDF Chat Ambiguous Classes in Quadratic Fields 1993 R. A. Mollin
+ Indivisibility of Class Numbers of Real Quadratic Fields 2008 Ayten PekiĢ‡n
+ Imaginary quadratic number fields with special class groups 1977 James J. Solderitsch
+ PDF Chat Class Numbers of Quadratic Fields 2020 Ajit Bhand
M Ram Murty

Works That Cite This (1)

Action Title Year Authors
+ Quadratic Number Fields 2021 Franz Lemmermeyer