On blow up for the energy super critical defocusing nonlinear Schrödinger equations

Type: Article

Publication Date: 2021-09-15

Citations: 26

DOI: https://doi.org/10.1007/s00222-021-01067-9

Abstract

Abstract We consider the energy supercritical defocusing nonlinear Schrödinger equation $$\begin{aligned} i\partial _tu+\Delta u-u|u|^{p-1}=0 \end{aligned}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mi>i</mml:mi> <mml:msub> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>-</mml:mo> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>u</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> in dimension $$d\ge 5$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:math> . In a suitable range of energy supercritical parameters ( d , p ), we prove the existence of $${\mathcal {C}}^\infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mi>∞</mml:mi> </mml:msup> </mml:math> well localized spherically symmetric initial data such that the corresponding unique strong solution blows up in finite time. Unlike other known blow up mechanisms, the singularity formation does not occur by concentration of a soliton or through a self similar solution, which are unknown in the defocusing case, but via a front mechanism . Blow up is achieved by compression for the associated hydrodynamical flow which in turn produces a highly oscillatory singularity. The front blow up profile is chosen among the countable family of $${\mathcal {C}}^\infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mi>∞</mml:mi> </mml:msup> </mml:math> spherically symmetric self similar solutions to the compressible Euler equation whose existence and properties in a suitable range of parameters are established in the companion paper (Merle et al. in Preprint (2019)) under a non degeneracy condition which is checked numerically.

Locations

  • arXiv (Cornell University) - View - PDF
  • Apollo (University of Cambridge) - View - PDF
  • Apollo (University of Cambridge) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • Inventiones mathematicae - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Blow-up of 𝐻¹ solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity 1991 Takayoshi Ogawa
Yoshio Tsutsumi
+ On blow up for the energy super critical defocusing non linear Schr\"odinger equations 2019 Frank Merle
Pierre Raphaël
Igor Rodnianski
Jérémie Szeftel
+ On blow up for the energy super critical defocusing non linear Schrödinger equations 2019 Frank Merle
Pierre Raphaël
Igor Rodnianski
Jérémie Szeftel
+ PDF Chat On blow-up for the supercritical defocusing nonlinear wave equation 2024 Feng Shao
Dongyi Wei
Zhifei Zhang
+ Defocusing <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mo>˙</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mrow></mml:msup></mml:math>-critical inhomogeneous nonlinear Schrödinger equations 2022 Ying Wang
Chengbin Xu
+ On a sharp lower bound on the blow-up rate for the 𝐿² critical nonlinear Schrödinger equation 2005 Frank Merle
Pierre Raphaël
+ PDF Chat On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D 2001 Galina Perelman
+ Large global solutions for energy-critical nonlinear Schrödinger equation 2021 Ruobing Bai
Jia Shen
Yifei Wu
+ PDF Chat The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation 2005 Frank Merle
Pierre Raphaël
+ The defocusing energy-critical nonlinear Schrodinger equation in dimensions five and 2006 Los Angeles
+ PDF Chat Blow-up criteria for linearly damped nonlinear Schrödinger equations 2020 Van Duong Dinh
+ PDF Chat Well-Posedness and Blow-Up for the Fractional Schrödinger- Choquard Equation 2022 Tao Lu
Yajuan Zhao null
Yongsheng Li
+ PDF Chat Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case 1999 Jean Bourgain
+ Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equations of fourth order in dimensions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>d</mml:mi><mml:mo>⩾</mml:mo><mml:mn>9</mml:mn></mml:math> 2011 Changxing Miao
Guixiang Xu
Lifeng Zhao
+ Blow up of the critical norm for some radial &lt;i&gt;L&lt;/i&gt;&lt;sup xmlns:m="http://www.w3.org/1998/Math/MathML" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"&gt;2&lt;/sup&gt; super critical nonlinear Schrödinger equations 2008 Frank Merle
Pierre Raphaël
+ PDF Chat Finite time blowup for a supercritical defocusing nonlinear Schrödinger system 2017 Terence Tao
+ PDF Chat Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation 2002 Frank Merle
Pierre Raphaël
+ PDF Chat Blow-up of non-radial solutions for the L <sup>2</sup> critical inhomogeneous NLS equation 2022 Mykael Cardoso
Luiz Gustavo Farah
+ Blow-up for the focusing<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mover accent="true"><mml:mi>H</mml:mi><mml:mo>˙</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>-critical Hartree equation with radial data 2013 Yanfang Gao
+ Non-radial Blow-up for a mass-critical fourth-order inhomogeneous nonlinear Schrödinger equation 2023 Ruobing Bai
Mohamed Majdoub
Tarek Saanouni