Kahler toric manifolds from dually flat spaces

Type: Preprint

Publication Date: 2021-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2109.04839

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Toric dually flat manifolds and complex space forms 2023 Danuzia Figueirêdo
Mathieu Molitor
+ The generalized Pythagorean theorem on the compactifications of certain dually flat spaces via toric geometry 2023 Hajime Fujita
+ PDF Chat A dual pair for the group of volume preserving diffeomorphisms 2024 Stefan Haller
Cornelia Vizman
+ Half-dimensional immersions in para-Kähler manifolds 2011 Roland Hildebrand
+ Toric geometry and local Calabi-Yau varieties: An introduction to toric geometry (for physicists) 2009 Cyril Closset
+ Geometric spectral theory for Kähler functions 2023 Mathieu Molitor
+ The tropical momentum map: a classification of toric log symplectic manifolds 2014 Marco Gualtieri
Songhao Li
Álvaro Pelayo
Tudor S. Raţiu
+ The tropical momentum map: a classification of toric log symplectic manifolds 2014 Marco Gualtieri
Songhao Li
Álvaro Pelayo
Tudor S. Raţiu
+ PDF Chat The tropical momentum map: a classification of toric log symplectic manifolds 2016 Marco Gualtieri
Songhao Li
Álvaro Pelayo
Tudor S. Raţiu
+ PDF Chat Morita equivalence and the generalized Kähler potential 2022 Francis Bischoff
Marco Gualtieri
Maxim Zabzine
+ The generalized Pythagorean theorem on the compactifications of certain dually flat spaces via toric geometry 2023 H. Fujita
+ Dual connections and affine geometry = 双対接続とアフィン幾何 1989 俊 黒瀬
+ On the topology of Lagrangian submanifolds in toric symplectic manifolds 2022 Joé Brendel
+ Morita equivalence and the generalized K\"ahler potential 2018 Francis Bischoff
Marco Gualtieri
Maxim Zabzine
+ PDF Chat Toric Geometry, Sasaki–Einstein Manifolds and a New Infinite Class of AdS/CFT Duals 2005 Dario Martelli
James Sparks
+ Dual connections and affine geometry 1990 Takashi Kurose
+ PDF Chat Holomorphic Lagrangian subvarieties in holomorphic symplectic manifolds with Lagrangian fibrations and special Kähler geometry 2021 Ljudmila Kamenova
Misha Verbitsky
+ Lectures on complex geometry, Calabi-Yau manifolds and toric geometry 2007 Vincent Bouchard
+ PDF Chat On strongly convex projectively flat and dually flat complex Finsler metrics 2018 Hongchuan Xia
Chunping Zhong
+ Morita equivalence and the generalized Kähler potential 2018 Francis Bischoff
Marco Gualtieri
Maxim Zabzine

Works That Cite This (0)

Action Title Year Authors