Sharp global convergence guarantees for iterative nonconvex optimization: A Gaussian process perspective

Type: Preprint

Publication Date: 2021-09-20

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Sharp global convergence guarantees for iterative nonconvex optimization: A Gaussian process perspective 2021 Kabir Aladin Chandrasekher
Ashwin Pananjady
Christos Thrampoulidis
+ Sharp global convergence guarantees for iterative nonconvex optimization with random data 2023 Kabir Aladin Chandrasekher
Ashwin Pananjady
Christos Thrampoulidis
+ PDF Chat Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion, and Blind Deconvolution 2019 Cong Ma
Kaizheng Wang
Yuejie Chi
Yuxin Chen
+ The estimation error of general first order methods 2020 Michael Celentano
Andrea Montanari
Yuchen Wu
+ The estimation error of general first order methods 2020 Michael Celentano
Andrea Montanari
Yuchen Wu
+ Alternating minimization for generalized rank one matrix sensing: Sharp predictions from a random initialization 2022 Kabir Aladin Chandrasekher
Mengqi Lou
Ashwin Pananjady
+ Fast global convergence rates of gradient methods for high-dimensional statistical recovery 2010 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Fast global convergence of gradient methods for high-dimensional statistical recovery 2011 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Fast global convergence of gradient methods for high-dimensional statistical recovery 2011 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Stochastic algorithms with geometric step decay converge linearly on sharp functions 2019 Damek Davis
Dmitriy Drusvyatskiy
Vasileios Charisopoulos
+ Algorithmic analysis and statistical estimation of SLOPE via approximate message passing 2019 Zhiqi Bu
Jason M. Klusowski
Cynthia Rush
Weijie Su
+ Fast global convergence of gradient methods for high-dimensional statistical recovery 2012 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction 2021 Dominik Stöger
Mahdi Soltanolkotabi
+ Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction 2021 Dominik Stöger
Mahdi Soltanolkotabi
+ Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction 2021 Dominik Stöger
Mahdi Soltanolkotabi
+ Misspecified Nonconvex Statistical Optimization for Phase Retrieval 2017 Zhuoran Yang
Lin F. Yang
Ethan X. Fang
Tuo Zhao
Zhaoran Wang
Matey Neykov
+ Nonconvex Statistical Optimization: Minimax-Optimal Sparse PCA in Polynomial Time 2014 Zhaoran Wang
Huanran Lu
Han Liu
+ PDF Chat Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview 2019 Yuejie Chi
Yue M. Lu
Yuxin Chen
+ Computationally Efficient and Statistically Optimal Robust High-Dimensional Linear Regression 2023 Yinan Shen
Jingyang Li
Jian‐Feng Cai
Dong Xia
+ Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing 2019 Zhiqi Bu
Jason M. Klusowski
Cynthia Rush
Weijie Su

Works That Cite This (0)

Action Title Year Authors