Asymptotic Optimality of the Triangular Lattice for a Class of Optimal Location Problems

Type: Article

Publication Date: 2021-09-27

Citations: 1

DOI: https://doi.org/10.1007/s00220-021-04216-6

Abstract

Abstract We prove an asymptotic crystallization result in two dimensions for a class of nonlocal particle systems. To be precise, we consider the best approximation with respect to the 2-Wasserstein metric of a given absolutely continuous probability measure $$f \mathrm {d}x$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi><mml:mi>d</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:math> by a discrete probability measure $$\sum _i m_i \delta _{z_i}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mo>∑</mml:mo><mml:mi>i</mml:mi></mml:msub><mml:msub><mml:mi>m</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:msub><mml:mi>δ</mml:mi><mml:msub><mml:mi>z</mml:mi><mml:mi>i</mml:mi></mml:msub></mml:msub></mml:mrow></mml:math> , subject to a constraint on the particle sizes $$m_i$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>m</mml:mi><mml:mi>i</mml:mi></mml:msub></mml:math> . The locations $$z_i$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>z</mml:mi><mml:mi>i</mml:mi></mml:msub></mml:math> of the particles, their sizes $$m_i$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>m</mml:mi><mml:mi>i</mml:mi></mml:msub></mml:math> , and the number of particles are all unknowns of the problem. We study a one-parameter family of constraints. This is an example of an optimal location problem (or an optimal sampling or quantization problem) and it has applications in economics, signal compression, and numerical integration. We establish the asymptotic minimum value of the (rescaled) approximation error as the number of particles goes to infinity. In particular, we show that for the constrained best approximation of the Lebesgue measure by a discrete measure, the discrete measure whose support is a triangular lattice is asymptotically optimal. In addition, we prove an analogous result for a problem where the constraint is replaced by a penalization. These results can also be viewed as the asymptotic optimality of the hexagonal tiling for an optimal partitioning problem. They generalise the crystallization result of Bourne et al. (Commun Math Phys, 329: 117–140, 2014) from a single particle system to a class of particle systems, and prove a case of a conjecture by Bouchitté et al. (J Math Pures Appl, 95:382–419, 2011). Finally, we prove a crystallization result which states that optimal configurations with energy close to that of a triangular lattice are geometrically close to a triangular lattice.

Locations

  • Communications in Mathematical Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Data Archiving and Networked Services (DANS) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Optimality of the Triangular Lattice for a Particle System with Wasserstein Interaction 2014 David Bourne
Mark A. Peletier
Florian Theil
+ Optimality of the triangular lattice for a particle system with Wasserstein interaction 2012 David Bourne
Mark A. Peletier
Florian Theil
+ Optimal Monte Carlo Methods for $$L^2$$ L 2 -Approximation 2018 David Krieg
+ PDF Chat Approximate Voronoi cells for lattices, revisited 2020 Thijs Laarhoven
+ PDF Chat Computational Optimal Transport 2019 Gabriel Peyré
Marco Cuturi
+ Optimal location on a sphere 1980 I. Norman Katz
Leon N. Cooper
+ PDF Chat Log-optimal (𝑑+2)-configurations in 𝑑–dimensions 2023 Peter D Dragnev
Oleg R. Musin
+ Centroidal Power Diagrams, Lloyd's Algorithm, and Applications to Optimal Location Problems 2015 David Bourne
Steven Roper
+ An iterative procedure for finding locally and globally optimal arrangements of particles on the unit sphere 2018 Wesley J.M. Ridgway
Alexei F. Cheviakov
+ Chapter VIII: The Lattice Approximation And Its Consequences 2015
+ Computational Optimal Transport 2018 Gabriel Peyré
Marco Cuturi
+ A quantitative stability result for the sphere packing problem in dimensions 8 and 24 2024 Károly J. Böröczky
Danylo Radchenko
João P. G. Ramos
+ Local optimality of the critical lattice sphere-packing of regular tetrahedra 1987 Mary H Dauenhauer
Hans Zassenhaus
+ PDF Chat Theta Functions and Optimal Lattices for a Grid Cells Model 2021 Laurent Bétermin
+ Semi-discrete unbalanced optimal transport and quantization 2018 David Bourne
Bernhard Schmitzer
Benedikt Wirth
+ Non-asymptotic convergence bounds for Wasserstein approximation using point clouds 2021 Quentin Mérigot
Filippo Santambrogio
Clément Sarrazin
+ PDF Chat Non-asymptotic convergence bounds for Wasserstein approximation using point clouds 2021 Quentin Mérigot
Filippo Santambrogio
Clément Sarrazin
+ On the question of final ?-optimality of lattices providing the closest lattice packing of n-dimensional spheres 1974 S. S. Ryshkov
+ Lattice Point Problems 2006
+ Lattice Distribution 2014