IICNet: A Generic Framework for Reversible Image Conversion

Type: Article

Publication Date: 2021-10-01

Citations: 19

DOI: https://doi.org/10.1109/iccv48922.2021.00200

Abstract

Reversible image conversion (RIC) aims to build a reversible transformation between specific visual content (e.g., short videos) and an embedding image, where the original content can be restored from the embedding when necessary. This work develops Invertible Image Conversion Net (IIC-Net) as a generic solution to various RIC tasks due to its strong capacity and task-independent design. Unlike previous encoder-decoder based methods, IICNet maintains a highly invertible structure based on invertible neural networks (INNs) to better preserve the information during conversion. We use a relation module and a channel squeeze layer to improve the INN nonlinearity to extract cross-image relations and the network flexibility, respectively. Experimental results demonstrate that IICNet outperforms the specifically-designed methods on existing RIC tasks and can generalize well to various newly-explored tasks. With our generic IICNet, we no longer need to hand-engineer task-specific embedding networks for rapidly occurring visual content. Our source codes are available at: https://github.com/felixcheng97/IICNet.

Locations

  • arXiv (Cornell University) - View - PDF
  • 2021 IEEE/CVF International Conference on Computer Vision (ICCV) - View

Similar Works

Action Title Year Authors
+ IICNet: A Generic Framework for Reversible Image Conversion 2021 Ka Leong Cheng
Yueqi Xie
Qifeng Chen
+ Reversible GANs for Memory-efficient Image-to-Image Translation 2019 Tycho F. A. van der Ouderaa
Daniel E. Worrall
+ PDF Chat Invertible Residual Rescaling Models 2024 Jinmin Li
T. Dai
Yaohua Zha
Yilu Luo
Longfei Lu
Bin Chen
Zhi Wang
Shu‐Tao Xia
Jingyun Zhang
+ PDF Chat Invertible Residual Rescaling Models 2024 Jinmin Li
T. Dai
Yaohua Zha
Yilu Luo
Longfei Lu
Bin Chen
Wang Zhi
Shu‐Tao Xia
Jingyun Zhang
+ Learning a Self-inverse Network for Unpaired Bidirectional Image-to-image Translation 2019 Zengming Shen
Shangchen Zhou
Yifan Chen
Bogdan Georgescu
Xuqi Liu
Thomas S. Huang
+ PDF Chat Self-Asymmetric Invertible Network for Compression-Aware Image Rescaling 2023 Jinhai Yang
Mengxi Guo
Shijie Zhao
Junlin Li
Li Zhang
+ CrevNet: Conditionally Reversible Video Prediction 2019 Wei Yu
Yichao Lu
Steve Easterbrook
Sanja Fidler
+ Self-Asymmetric Invertible Network for Compression-Aware Image Rescaling 2023 Jinhai Yang
Mengxi Guo
Shijie Zhao
Junlin Li
Li Zhang
+ PDF Chat Invertible Denoising Network: A Light Solution for Real Noise Removal 2021 Yang Liu
Zhenyue Qin
Saeed Anwar
Pan Ji
Dongwoo Kim
Sabrina Caldwell
Tom Gedeon
+ PDF Chat Reversible Decoupling Network for Single Image Reflection Removal 2024 Hao Zhao
Mingjia Li
Qiming Hu
Xiaojie Guo
+ PDF Chat One-to-one Mapping for Unpaired Image-to-image Translation 2020 Zengming Shen
Yifan Chen
Thomas S. Huang
Shuchang Zhou
Bogdan Georgescu
Xuqi Liu
+ One-to-one Mapping for Unpaired Image-to-image Translation 2019 Zengming Shen
Shuchang Zhou
Yifan Chen
Bogdan Georgescu
Xuqi Liu
Thomas S. Huang
+ MintNet: Building Invertible Neural Networks with Masked Convolutions 2019 Yang Song
Chenlin Meng
Stefano Ermon
+ MintNet: Building Invertible Neural Networks with Masked Convolutions 2019 Yang Song
Chenlin Meng
Stefano Ermon
+ PDF Chat StyleRes: Transforming the Residuals for Real Image Editing with StyleGAN 2023 Hamza Pehlivan
Yusuf Dalva
Aysegul Dundar
+ Invertible Attention 2021 Jiajun Zha
Yiran Zhong
Jing Zhang
Richard Hartley
Liang Zheng
+ StyleRes: Transforming the Residuals for Real Image Editing with StyleGAN 2022 Hamza Pehlivan
Yusuf Dalva
Aysegul Dundar
+ HyperInverter: Improving StyleGAN Inversion via Hypernetwork 2021 Tan M. Dinh
Anh Tran
Rang Nguyen
Binh‐Son Hua
+ PDF Chat RefineStyle: Dynamic Convolution Refinement for StyleGAN 2024 Siwei Xia
Xueqi Hu
Sun Li
Qingli Li
+ UVCGAN: UNet Vision Transformer cycle-consistent GAN for unpaired image-to-image translation 2022 D. Torbunov
Yi Huang
H. Yu
J. Huang
Shinjae Yoo
Meifeng Lin
B. Viren
Yihui Ren