Representation by sums of unlike powers

Type: Article

Publication Date: 2021-08-27

Citations: 3

DOI: https://doi.org/10.1515/crelle-2021-0048

Abstract

Abstract It is proved that all sufficiently large integers n can be represented as <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mrow> <m:msubsup> <m:mi>x</m:mi> <m:mn>1</m:mn> <m:mn>2</m:mn> </m:msubsup> <m:mo>+</m:mo> <m:msubsup> <m:mi>x</m:mi> <m:mn>2</m:mn> <m:mn>3</m:mn> </m:msubsup> <m:mo>+</m:mo> <m:mi mathvariant="normal">⋯</m:mi> <m:mo>+</m:mo> <m:msubsup> <m:mi>x</m:mi> <m:mn>13</m:mn> <m:mn>14</m:mn> </m:msubsup> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> n=x_{1}^{2}+x_{2}^{3}+\cdots+x_{13}^{14}, where <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant="normal">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mn>13</m:mn> </m:msub> </m:mrow> </m:math> {x_{1},\ldots,x_{13}} are positive integers. This improves upon the current record with fourteen variables in place of thirteen.

Locations

  • arXiv (Cornell University) - View - PDF
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View

Similar Works

Action Title Year Authors
+ Representation by sums of unlike powers 2021 Jianya Liu
Lilu Zhao
+ PDF Chat Representation by sums of unlike powers 2021 Jianya Liu
Lilu Zhao
+ Approximating the number of integers without large prime factors 2005 Koji Suzuki
+ PDF Chat Approximating the number of integers free of large prime factors 1997 Simon C. Hunter
Jonathan Sorenson
+ Representations of numbers as sums and differences of unlike powers 2010 Enrico Jabara
+ PDF Chat Sums of quotients of additive functions 1974 Jean-Marie De Koninck
+ Sums of Powers of Integers 2021
+ Sums of Powers of Integers 2011 Ranjan Roy
+ The Representation of Numbers as Sums of Unlike Powers 1995 Kevin Ford
+ PDF Chat On an equation by primes with one Linnik prime 2022 Stoyan Dimitrov
+ Powers of Sums of Digits 1979 Sumit Mohanty
Hemant Kumar
+ PDF Chat The representation of almost all numbers as sums of unlike powers 2001 Maurizio Laporta
Trevor D. Wooley
+ PDF Chat On integers free of large prime factors 1986 Adolf Hildebrand
Gérald Tenenbaum
+ Sums of Integer Powers 1982 Darrell Desbrow
+ Integers represented as the sum of one prime, two squares of primes and powers of 2 2008 Guangshi Lü
Haiwei Sun
+ Power detection over number fields 2023 Karim Belabas
Denis Simon
+ Powers of Numbers 2007
+ Powers of Numbers 2008
+ PDF Chat On a sequence of rational numbers with unusual divisibility by a power of 2 2024 Artūras Dubickas
+ PDF Chat Exceptional Sets for Sums of Prime Cubes in Short Interval 2021 Gongrui Chen