Type: Article
Publication Date: 1999-07-01
Citations: 57
DOI: https://doi.org/10.1214/aop/1022677450
We show that independent percolation on any Cayley graph of a nonamenable group has no infinite components at the critical parameter. This result was obtained by the present authors earlier as a corollary of a general study of group-invariant percolation. The goal here is to present a simpler self-contained proof that easily extends to quasi-transitive graphs with a unimodular automorphism group. The key tool is a “mass-transport” method, which is a technique of averaging in nonamenable settings.