A high-order fully discrete scheme for the Korteweg–de Vries equation with a time-stepping procedure of Runge–Kutta-composition type

Type: Article

Publication Date: 2021-07-06

Citations: 2

DOI: https://doi.org/10.1093/imanum/drab060

Abstract

Abstract We consider the periodic initial-value problem for the Korteweg–de Vries equation that we discretize in space by a spectral Fourier–Galerkin method and in time by an implicit, high-order, Runge–Kutta scheme of composition type based on the implicit midpoint rule. We prove $L^{2}$ error estimates for the resulting semidiscrete and the fully discrete approximations. Some numerical experiments illustrate the results.

Locations

  • IMA Journal of Numerical Analysis - View
  • University of Valladolid Documentary Repository (University of Valladolid) - View - PDF

Similar Works

Action Title Year Authors
+ A high order fully discrete scheme for the Korteweg-de vries equation with a time-stepping procedure of Runge-Kutta-composition type 2020 Vassilios A. Dougalis
A. Durán
+ Notes on a high order fully discrete scheme for the Korteweg-de vries equation with a time-stepping procedure of Runge-Kutta-composition type 2020 Vassilios A. Dougalis
A. Durán
+ On some high-order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation 1985 Vassilios A. Dougalis
Ohannes A. Karakashian
+ PDF Chat On Some High-Order Accurate Fully Discrete Galerkin Methods for the Korteweg-de Vries Equation 1985 Vassilios A. Dougalis
Ohannes A. Karakashian
+ Convergence of a fully discrete finite difference scheme for the Korteweg-de Vries equation 2012 Helge Holden
Ujjwal Koley
Nils Henrik Risebro
+ Convergence of a fully discrete finite difference scheme for the Korteweg-de Vries equation 2012 Helge Holden
Ujjwal Koley
Nils Henrik Risebro
+ PDF Chat Error estimates of finite difference schemes for the Korteweg–de Vries equation 2018 Clémentine Courtès
Fré́dé́ric Lagoutière
Frédéric Rousset
+ Convergence of a full discrete finite element method for the Korteweg–de Vries equation 2020 Pengzhan Huang
+ PDF Chat Error estimate for a fully discrete spectral scheme for Korteweg-de Vries-Kawahara equation 2011 Ujjwal Koley
+ Fully discrete low-regularity integrator for the Korteweg–de Vries equation 2023 Yongsheng Li
Fangyan Yao
+ Error Estimate for a Fully Discrete Spectral Scheme for Korteweg-de Vries-Kawahara Equation 2011 Ujjwal Koley
+ PDF Chat A Lawson-type exponential integrator for the Korteweg–de Vries equation 2019 Alexander Ostermann
Chunmei Su
+ PDF Chat Numerical method for the zero dispersion limit of the fractional Korteweg-de Vries equation 2024 Mukul Dwivedi
Tanmay Sarkar
+ High-order numerical method for the fractional Korteweg-de Vries equation using the discontinuous Galerkin method 2025 Yanhua Gu
+ Error Estimates of a Space-Time Legendre Spectral Method for Solving the Korteweg-De Vries Equation 2023 Lin Sang
Hua Wu
+ Numerical analysis with error estimates for the Korteweg-de Vries Equation 2017 Clémentine Courtès
Fré́dé́ric Lagoutière
Frédéric Rousset
+ Fully Discrete Finite Difference Schemes for the Fractional Korteweg-de Vries Equation 2024 Mukul Dwivedi
Tanmay Sarkar
+ Investigation of finite difference schemes for the Korteweg-De Vries equation 1992 N. D. Turetayev
+ PDF Chat Conservative, discontinuous Galerkin–methods for the generalized Korteweg–de Vries equation 2013 Jerry L. Bona
H. Chen
Ohannes A. Karakashian
Yulong Xing
+ Survey of numerical methods for the Kortewegde Vries equation. 2009 Øystein Storaas Haugen