Divisor-bounded multiplicative functions in short intervals

Type: Article

Publication Date: 2023-02-18

Citations: 4

DOI: https://doi.org/10.1007/s40687-023-00376-0

Abstract

Abstract We extend the Matomäki–Radziwiłł theorem to a large collection of unbounded multiplicative functions that are uniformly bounded, but not necessarily bounded by 1, on the primes. Our result allows us to estimate averages of such a function f in typical intervals of length $$h(\log X)^c$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>h</mml:mi> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>c</mml:mi> </mml:msup> </mml:mrow> </mml:math> , with $$h = h(X) \rightarrow \infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>h</mml:mi> <mml:mo>=</mml:mo> <mml:mi>h</mml:mi> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> <mml:mo>→</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> and where $$c = c_f \ge 0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> is determined by the distribution of $$\{|f(p) |\}_p$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mo>{</mml:mo> <mml:mo>|</mml:mo> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> <mml:mo>}</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> </mml:math> in an explicit way. We give three applications. First, we show that the classical Rankin–Selberg-type asymptotic formula for partial sums of $$|\lambda _f(n) |^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mi>f</mml:mi> </mml:msub> <mml:msup> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> , where $$\{\lambda _f(n)\}_n$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mo>{</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mi>f</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> </mml:math> is the sequence of normalized Fourier coefficients of a primitive non-CM holomorphic cusp form, persists in typical short intervals of length $$h\log X$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>h</mml:mi> <mml:mo>log</mml:mo> <mml:mi>X</mml:mi> </mml:mrow> </mml:math> , if $$h = h(X) \rightarrow \infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>h</mml:mi> <mml:mo>=</mml:mo> <mml:mi>h</mml:mi> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> <mml:mo>→</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> . We also generalize this result to sequences $$\{|\lambda _{\pi }(n) |^2\}_n$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mo>{</mml:mo> <mml:mo>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mi>π</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:msup> <mml:mo>|</mml:mo> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>}</mml:mo> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:math> , where $$\lambda _{\pi }(n)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mi>π</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is the n th coefficient of the standard L -function of an automorphic representation $$\pi $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>π</mml:mi> </mml:math> with unitary central character for $$GL_m$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>G</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>m</mml:mi> </mml:msub> </mml:mrow> </mml:math> , $$m \ge 2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> , provided $$\pi $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>π</mml:mi> </mml:math> satisfies the generalized Ramanujan conjecture. Second, using recent developments in the theory of automorphic forms we estimate the variance of averages of all positive real moments $$\{|\lambda _f(n) |^{\alpha }\}_n$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mo>{</mml:mo> <mml:mo>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mi>f</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:msup> <mml:mo>|</mml:mo> <mml:mi>α</mml:mi> </mml:msup> <mml:mo>}</mml:mo> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:math> over intervals of length $$h(\log X)^{c_{\alpha }}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>h</mml:mi> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>α</mml:mi> </mml:msub> </mml:msup> </mml:mrow> </mml:math> , with $$c_{\alpha } &gt; 0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>α</mml:mi> </mml:msub> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> explicit, for any $$\alpha &gt; 0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , as $$h = h(X) \rightarrow \infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>h</mml:mi> <mml:mo>=</mml:mo> <mml:mi>h</mml:mi> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> <mml:mo>→</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> . Finally, we show that the (non-multiplicative) Hooley $$\Delta $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Δ</mml:mi> </mml:math> -function has average value $$\gg \log \log X$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>≫</mml:mo> <mml:mo>log</mml:mo> <mml:mo>log</mml:mo> <mml:mi>X</mml:mi> </mml:mrow> </mml:math> in typical short intervals of length $$(\log X)^{1/2+\eta }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:mi>η</mml:mi> </mml:mrow> </mml:msup> </mml:math> , where $$\eta &gt;0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> is fixed.

Locations

  • Research in the Mathematical Sciences - View - PDF

Similar Works

Action Title Year Authors
+ On divisor bounded multiplicative functions in short intervals 2024 Yu Sun
+ PDF Chat Additive functions in short intervals, gaps and a conjecture of Erdős 2022 Alexander P. Mangerel
+ Divisors on overlapped intervals and multiplicative functions 2017 Rodríguez Caballero
José Manuel
+ On certain unbounded multiplicative functions in short intervals 2024 Yajun Zhou
+ Additive functions in short intervals, gaps and a conjecture of Erd\H{o}s 2021 Alexander P. Mangerel
+ Multiplicative Functions of Special Type in Short Intervals 1992 P. Varbanec
+ PDF Chat A Note on Large Sums of Divisor-Bounded Multiplicative Functions 2024 Claire Frechette
Mathilde Gerbelli-Gauthier
Alia Hamieh
Naomi Tanabe
+ PDF Chat Primes of the form 𝑝=1+𝑚²+𝑛² in short intervals 1998 Jie Wu
+ PDF Chat Fourier uniformity of bounded multiplicative functions in short intervals on average 2019 Kaisa Matomäki
Maksym Radziwiłł
Terence Tao
+ Multiplicative properties of integers in short intervals 1980 Jan Turk
+ Multiplicative properties of integers in short intervals 2015 Asim Islam
+ Divisor-bounded multiplicative functions in short intervals 2021 Alexander P. Mangerel
+ Multiplicative functions in short intervals II 2020 Kaisa Matomäki
Maksym Radziwiłł
+ PDF Chat Multiplicative functions on shifted primes 2021 Stelios Sachpazis
+ PDF Chat Correction to: Fourier uniformity of bounded multiplicative functions in short intervals on average 2019 Kaisa Matomäki
Maksym Radziwiłł
Terence Tao
+ Additive functions in short intervals, gaps and a conjecture of Erdős 2021 Alexander P. Mangerel
+ On the values of multiplicative functions in short intervals 1969 И. Катаи
+ Multiplicative functions in short intervals II 2020 Kaisa Matomäki
Maksym Radziwiłł
+ Multiplicative functions in short arithmetic progressions 2019 Oleksiy Klurman
Alexander P. Mangerel
Joni Teräväinen
+ PDF Chat Short sums of multiplicative functions 2012 Vishaal Kapoor