Discrete Schrödinger operators with decaying and oscillating potentials

Type: Article

Publication Date: 2024-04-12

Citations: 0

DOI: https://doi.org/10.1090/spmj/1803

Abstract

The paper is devoted to a family of discrete one-dimensional Schrödinger operators with power-like decaying potentials with rapid oscillations. In particular, for the potential <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V left-parenthesis n right-parenthesis equals lamda n Superscript negative alpha Baseline cosine left-parenthesis pi omega n Superscript beta Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> <mml:mi>cos</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>π<!-- π --></mml:mi> <mml:mi>ω<!-- ω --></mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">V(n)=\lambda n^{-\alpha }\cos (\pi \omega n^\beta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 greater-than beta greater-than 2 alpha"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>β<!-- β --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>2</mml:mn> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">1&gt;\beta &gt;2\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, it is proved that the spectrum is purely absolutely continuous on the spectrum of the Laplacian.

Locations

  • St Petersburg Mathematical Journal - View
  • arXiv (Cornell University) - View - PDF
  • CaltechAUTHORS (California Institute of Technology) - View - PDF

Similar Works

Action Title Year Authors
+ Discrete Schrödinger operators with decaying and oscillating potentials 2021 Rupert L. Frank
Simon Larson
+ PDF Chat Schrödinger operators with rapidly oscillating central potentials 1983 Denis A. W. White
+ Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: Some optimal results 1998 Michael Christ
Alexander Kiselev
+ PDF Chat Asymptotics of the negative discrete spectrum of a class of Schrödinger operators with large coupling constant 1993 Ари Лаптев
+ Schrödinger Operators with Oscillating Potentials 1981 Allen Devinatz
Peter Rejto
+ Discrete spectrum of Schrödinger operators with oscillating decaying potentials 2015 Georgi Raikov
+ Discrete spectrum of Schr\"odinger operators with oscillating decaying potentials 2015 Georgi Raikov
+ Schr\"odinger operators with rapidly oscillating potentials 2007 Itaru Sasaki
+ Discrete spectrum for Schrödinger operators with oscillating decaying potentials 2016 Georgi Raikov
+ PDF Chat Fall-Off of Eigenfunctions for Non-Local Schrödinger Operators with Decaying Potentials 2016 Kamil Kaleta
József Lőrinczi
+ Schrödinger operators with highly singular oscillating potentials 1992 Karl‐Theodor Sturm
+ Spectral Properties of Schrödinger Operators with Decaying Potentials 2005 Sergey A. Denisov
Alexander Kiselev
+ Spectral Properties of Schrödinger Operators with Decaying Potentials 2007 Sergey A. Denisov
Alexander Kiselev
+ PDF Chat On a discreteness condition of the spectrum of Schrödinger operators with unbounded potential from below 1978 Vieri Benci
Donato Fortunato
+ Schrödinger operators with decaying potentials: some counterexamples 2000 Christian Remling
+ Schrodinger Operators with Rapidly Oscillating Central Potentials 1983 Denis A. W. White
+ One-dimensional Schrödinger operators with decaying potentials 1999 Christian Remling
+ Schrödinger operators 1995 E. B. Davies
+ Wave operators for the Schroedinger equation with a slowly decreasing potential 1970 V. S. Buslaev
V. B. Matveev
+ One-dimensional Schr�dinger operators with random decaying potentials 1988 S. Kotani
Noboru Ushiroya

Works That Cite This (0)

Action Title Year Authors