The reductive Borel–Serre compactification as a model for unstable algebraic K-theory

Type: Article

Publication Date: 2023-12-22

Citations: 1

DOI: https://doi.org/10.1007/s00029-023-00900-8

Abstract

Abstract Let A be an associative ring and M a finitely generated projective A -module. We introduce a category $${\text {RBS}}(M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtext>RBS</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> and prove several theorems which show that its geometric realisation functions as a well-behaved unstable algebraic K-theory space. These categories $${\text {RBS}}(M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtext>RBS</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> naturally arise as generalisations of the exit path $$\infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>∞</mml:mi> </mml:math> -category of the reductive Borel–Serre compactification of a locally symmetric space, and one of our main techniques is to find purely categorical analogues of some familiar structures in these compactifications.

Locations

Similar Works

Action Title Year Authors
+ The reductive Borel-Serre compactification as a model for unstable algebraic K-theory 2021 Dustin Clausen
Mikala Ørsnes Jansen
+ PDF Chat Unstable algebraic K-theory: homological stability and other observations 2024 Mikala Ørsnes Jansen
+ The Krull filtration of the category of unstable modules over the Steenrod algebra 2013 Nicholas J. Kuhn
+ PDF Chat The Krull filtration of the category of unstable modules over the Steenrod algebra 2013 Nicholas J. Kuhn
+ The Krull filtration of the category of unstable modules over the Steenrod algebra 2013 Nicholas J. Kuhn
+ Depth and detection for Noetherian unstable algebras 2019 Drew Heard
+ Depth and detection for Noetherian unstable algebras 2019 Drew Heard
+ PDF Chat The Krull filtration of the category of unstable modules over the Steenrod algebra 2014 Nicholas J. Kuhn
+ Non-connective delooping of K-theory of an A∞ ring space 1990 Zbigniew Fiedorowicz
R. Schwänzl
Richard Steiner
R. M. Vogt
+ The Algebra R(K) 1979 T. W. Gamelin
+ Open Cones and K-Theory for ℓp Roe Algebras 2024 Jianguo Zhang
+ A∞ ring spaces and algebraic K-theory 1978 J. P. May
+ The Krull nature of locally 𝐶*-algebras 2003 Marina Haralampidou
+ Ring ideals and the Stone-Čech compactification in pointfree topology 2010 Bernhard Banaschewski
Mark Sioen
+ Rational $K$-Stability of Continuous $C(X)$-Algebras 2021 Apurva Seth
Prahlad Vaidyanathan
+ Ramification theoretic methods in algebraic geometry 1960 Shreeram S. Abhyankar
+ PDF Chat The topological nilpotence degree of a Noetherian unstable algebra 2021 Drew Heard
+ Algebraic K-theory of stable C∗-algebras 1988 Nigel Higson
+ A characterization of k-ary algebraic categories 1971 Horst Herrlich
+ ALGEBRA IN THE STONE-CECH COMPACTIFICATION AND ITS APPLICATIONS TO RAMSEY THEORY : A printed lecture presented to the International Meeting of Mathematical Sciences 2005 Neil Hindman