On Polynomial Solutions of Pell’s Equation

Type: Article

Publication Date: 2021-08-12

Citations: 9

DOI: https://doi.org/10.1155/2021/5379284

Abstract

Polynomial Pell’s equation is <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <msup> <mrow> <mi>x</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>−</mo> <mi>D</mi> <msup> <mrow> <mi>y</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>±</mo> <mn>1</mn> </math> , where <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mi>D</mi> </math> is a quadratic polynomial with integer coefficients and the solutions <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> </math> must be quadratic polynomials with integer coefficients. Let <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4"> <mi>D</mi> <mo>=</mo> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <msup> <mrow> <mi>x</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </math> be a polynomial in <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5"> <mi mathvariant="double-struck">Z</mi> <mfenced open="[" close="]" separators="|"> <mrow> <mi>x</mi> </mrow> </mfenced> </math> . In this paper, some quadratic polynomial solutions are given for the equation <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6"> <msup> <mrow> <mi>x</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>−</mo> <mi>D</mi> <msup> <mrow> <mi>y</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>±</mo> <mn>1</mn> </math> which are significant from computational point of view.

Locations

  • Journal of Mathematics - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ PDF Chat Polynomial Pell’s equations 1976 Melvyn B. Nathanson
+ PDF Chat The Polynomial Solutions of Quadratic Diophantine Equation <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <msup> <mrow> <mi>X</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>−</mo> <mi>p</mi> <mfenced open="(" close=")" separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> <msup> <mrow> <mi>Y</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>K</mi> <mfenced open="(" close=")" separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> <mi>X</mi> <mo>+</mo> <mn>2</mn… 2021 Hasan Sankari
Ahmad Abdo
+ Solutions of polynomial Pell's equation 2010 Hisashi Yokota
+ Properties of solutions to Pell’s equation over the polynomial ring 2022 Nikoleta Kalaydzhieva
+ POLYNOMIAL SOLUTIONS FOR THE PELL’S EQUATION 2015 A. M. S. Ramasamy
+ Parametric solutions of Pell equations 2015 Leonardo Zapponi
+ Polynomial Pell's equation–II 2004 William A. Webb
Hisashi Yokota
+ PDF Chat On two classes of simultaneous Pell equations with no solutions 1999 Peter Walsh
+ POLYNOMIAL SOLUTIONS FOR PELL’S EQUATION REVISITED 2015 R. A. MOLLIN
+ PDF Chat On the Pell Equations 2019 Yinxia Ran
+ PDF Chat Polynomial Pell’s equation 2002 William A. Webb
Hisashi Yokota
+ PDF Chat Pell Equations and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <msub> <mrow> <mi mathvariant="normal">ℱ</mi> </mrow> <mrow> <msup> <mrow> <mi>p</mi> </mrow> <mrow> <mi>l</mi> </mrow> </msup> </mrow> </msub> </math>-Continued Fractions 2022 Seema Kushwaha
+ A note on the use of Rédei polynomials for solving the polynomial Pell equation and its generalization to higher degrees 2019 Nadir Murru
+ Solving the Pell Equation 2008 Michael J. Jacobson
Hugh C. Williams
+ On simultaneous Pell equations and related Thue equations 2015 Bo He
Ákos Pintér
Alain Togbé
+ On Pell equation x~2-p(pn±2)y~2=-1(p≡-3(mod8)) 2012 Zhao Jin-e
+ PDF Chat Some new results on the negative polynomial Pell’s equation 2024 K. Anitha
I. Mumtaj Fathima
A. Vijayalakshmi
+ Polynomial Pell's Equations 1976 Melvyn B. Nathanson
+ Determination Methods of Solution on Pell Equation x~2-(4n+2)y~2=-1 2012 Zhao Jin
+ On Pell Equation x~2-5(5n±2)y~2=-1(n≡-1(mod4)) 2012 Zhao Jin-e