Rank 3 quadratic generators of Veronese embeddings

Type: Article

Publication Date: 2021-08-02

Citations: 6

DOI: https://doi.org/10.1112/s0010437x2100748x

Abstract

Let $L$ be a very ample line bundle on a projective scheme $X$ defined over an algebraically closed field $\Bbbk$ with ${\rm char}\,\Bbbk \neq 2$ . We say that $(X,L)$ satisfies property $\mathsf {QR}(k)$ if the homogeneous ideal of the linearly normal embedding $X \subset {\mathbb {P}} H^{0} (X,L)$ can be generated by quadrics of rank less than or equal to $k$ . Many classical varieties, such as Segre–Veronese embeddings, rational normal scrolls and curves of high degree, satisfy property $\mathsf {QR}(4)$ . In this paper, we first prove that if ${\rm char}\,\Bbbk \neq 3$ then $({\mathbb {P}}^{n} , \mathcal {O}_{{\mathbb {P}}^{n}} (d))$ satisfies property $\mathsf {QR}(3)$ for all $n \geqslant 1$ and $d \geqslant 2$ . We also investigate the asymptotic behavior of property $\mathsf {QR}(3)$ for any projective scheme. Specifically, we prove that (i) if $X \subset {\mathbb {P}} H^{0} (X,L)$ is $m$ -regular then $(X,L^{d} )$ satisfies property $\mathsf {QR}(3)$ for all $d \geqslant m$ , and (ii) if $A$ is an ample line bundle on $X$ then $(X,A^{d} )$ satisfies property $\mathsf {QR}(3)$ for all sufficiently large even numbers $d$ . These results provide affirmative evidence for the expectation that property $\mathsf {QR}(3)$ holds for all sufficiently ample line bundles on $X$ , as in the cases of Green and Lazarsfeld's condition $\mathrm {N}_p$ and the Eisenbud–Koh–Stillman determininantal presentation in Eisenbud et al. [ Determinantal equations for curves of high degree , Amer. J. Math. 110 (1988), 513–539]. Finally, when ${\rm char}\,\Bbbk = 3$ we prove that $({\mathbb {P}}^{n} , \mathcal {O}_{{\mathbb {P}}^{n}} (2))$ fails to satisfy property $\mathsf {QR}(3)$ for all $n \geqslant 3$ .

Locations

  • arXiv (Cornell University) - View - PDF
  • Compositio Mathematica - View

Similar Works

Action Title Year Authors
+ Rank 3 Quadratic Generators of Veronese Embeddings 2020 Kangjin Han
Wanseok Lee
Hyunsuk Moon
Euisung Park
+ Rank 3 Quadratic Generations of Veronese Embeddings 2020 Kangjin Han
Wanseok Lee
Hyunsuk Moon
Euisung Park
+ PDF Chat On rank 3 quadratic equations of Veronese varieties 2024 Euisung Park
Shin Zhu Sim
+ On the rank index of some quadratic varieties 2022 Hyunsuk Moon
Euisung Park
+ Heuristics for $\ell$-torsion in Veronese Syzygies 2020 Caitlyn Booms-Peot
Daniel Erman
Jay Yang
+ A lower bound for $\chi (\mathcal O_S)$ 2021 Vincenzo Di Gennaro
+ PDF Chat On the Rank Index of Some Quadratic Varieties 2023 Hyunsuk Moon
Euisung Park
+ A lower bound for $χ(\mathcal O_S)$ 2021 Vincenzo Di Gennaro
+ On rank 3 quadratic equations of projective varieties 2022 Euisung Park
+ PDF Chat On the prime ideals of higher secant varieties of Veronese embeddings of small degrees 2024 Katsuhisa Furukawa
Kangjin Han
+ PDF Chat ON THE STRATIFICATION OF THE PROJECTIVE SPACE BY THE X-RANK FOR A CERTAIN CONFIGURATION X OF RATIONAL NORMAL CURVES 2014 Edoardo Ballico
+ Syzygy structures of Inner projections 2008 Kangjin Han
Sijong Kwak
+ Smooth varieties of almost minimal degree 2007 Euisung Park
+ Special subhomaloidal systems of quadrics and varieties with one apparent double point 2003 Alberto Alzati
Francesco G. Russo
+ A bound on the degree of schemes defined by quadratic equations 2010 Alberto Alzati
José Carlos Sierra
+ A bound on the degree of schemes defined by quadratic equations 2010 Alberto Alzati
José Carlos Sierra
+ PDF Chat On the locus of points of high rank 2017 Jarosław Buczyński
Kangjin Han
Massimiliano Mella
Zach Teitler
+ Monomial projections of Veronese varieties: new results and conjectures 2023 Liena Colarte-Gómez
Rosa M. Miró‐Roig
Lisa Nicklasson
+ On secant loci and simple linear projections of some projective varieties 2008 Euisung Park
+ Homogeneous projective varieties with semi-continuous rank function 2013 Alexey Petukhov
Valdemar V. Tsanov