Type: Article
Publication Date: 2021-08-12
Citations: 1
DOI: https://doi.org/10.53733/156
We give a systematic treatment of caloric measure null sets on the essential boundary $\partial_eE$ of an arbitrary open set $E$ in ${\bf R}$. We discuss two characterisations of such sets and present some basic properties. We investigate the dependence of caloric measure null sets on the open set $E$. Thus, if $D$ is an open subset of $E$ and $Z\subseteq\partial_eE\cap\partial_eD$, we show that $Z$ is caloric measure null for $D$ if it is caloric measure null for $E$. We also give conditions on $E$ and $Z$ which imply that the reverse implication is true. We know from \cite{watson2011} that any polar subset of $\partial_eD$ is caloric measure null for $D$, but the reverse implication is not generally true. In our final result we show that, for subsets of a certain component of $\partial_eD$, caloric measure null sets are necessarily polar.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | The set of mildly regular boundary points has full caloric measure | 2023 |
N. A. Watson |