Fractal uncertainty principle for discrete Cantor sets with random alphabets

Type: Preprint

Publication Date: 2021-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2107.08276

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Fractal uncertainty principle for random Cantor sets 2024 Xiaolong Han
Pouria Salekani
+ PDF Chat Fractal uncertainty principle for discrete Cantor sets with random alphabets 2023 Suresh Eswarathasan
Xiaolong Han
+ PDF Chat Bounds on the fractal uncertainty exponent and a spectral gap 2024 Alain Kangabire
+ Fractal dimension and the Cantor set 2014 Shailesh A. Shirali
+ Fractal uncertainty for discrete 2D Cantor sets 2022 Alex S. Cohen
+ PDF Chat When is the fractal uncertainty principle for discrete Cantor sets most uncertain? 2025 Chun‐Kit Lai
Ruxi Shi
+ PDF Chat Hausdorff dimension of set of real numbers characterized by digit properties in a Cantor expansion 1968 Helmut Wegmann
+ Cantor Set and Fractal 2020 Neeraj Rattehalli
+ Fractal Cantor Like Sets 2022
+ An Hausdorff dimension of Cantor Set with Non-Uniform Scale Transformations 1996 Fumio Ohi
Tomotaka Ishida
+ Daubechies' Time-Frequency Localization Operator on Cantor Type Sets II 2021 Helge Knutsen
+ PDF Chat ÇŹ-representation of Real Numbers as a Generalization of Cantor Numeral Systems 2022 Mykola V. Pratsiovytyi
Olha Serhiivna Bondarenko
Sofiia Ratushniak
Kateryna Franchuk
+ PDF Chat On the Hausdorff dimension of the set of numbers with bounded sequences of digits in the Cantor expansion 1965 Tibor Ć alĂĄt
+ PDF Chat Fractal and statistical analysis on digits of irrational numbers 2006 Dejian Lai
Marius‐F. Danca
+ The Beta(p,1) extensions of the random (uniform) cantor sets 2009 Sandra M. Aleixo
DĂ­nis Pestana
J. Leonel Rocha
+ PDF Chat Weak Uncertainty Principles on Fractals 2005 Kasso A. Okoudjou
Robert S. Strichartz
+ Fractal dimension of the image of the Cantor set under the functions $x^n$ 1996 Mehmet Üreyen
+ Hausdorff measure of m non-uniform Cantor set 2006 Zeng Chao-yi
+ Daubechies' time-frequency localization operator on Cantor type sets II 2022 Helge Knutsen
+ Dimensions of the Perturbed Random Cantor Sets 1997 In-Soo Baek
Hung-Hwan Lee
Taesik Kim

Works That Cite This (0)

Action Title Year Authors