Approximation Theorems for the Schrödinger Equation and Quantum Vortex Reconnection

Type: Article

Publication Date: 2021-07-28

Citations: 6

DOI: https://doi.org/10.1007/s00220-021-04177-w

Abstract

Abstract We prove the existence of smooth solutions to the Gross–Pitaevskii equation on $$\mathbb {R}^3$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> that feature arbitrarily complex quantum vortex reconnections. We can track the evolution of the vortices during the whole process. This permits to describe the reconnection events in detail and verify that this scenario exhibits the properties observed in experiments and numerics, such as the $$t^{1/2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> and change of parity laws. We are mostly interested in solutions tending to 1 at infinity, which have finite Ginzburg–Landau energy and physically correspond to the presence of a background chemical potential, but we also consider the cases of Schwartz initial data and of the Gross–Pitaevskii equation on the torus. In the proof, the Gross–Pitaevskii equation operates in a nearly linear regime, so the result applies to a wide range of nonlinear Schrödinger equations. Indeed, an essential ingredient in the proofs is the development of novel global approximation theorems for the Schrödinger equation on $$\mathbb {R}^n$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:math> . Specifically, we prove a qualitative approximation result that applies for solutions defined on very general spacetime sets and also a quantitative result for solutions on product sets in spacetime $$D\times \mathbb {R}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>×</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> . This hinges on frequency-dependent estimates for the Helmholtz–Yukawa equation that are of independent interest.

Locations

  • Communications in Mathematical Physics - View - PDF

Similar Works

Action Title Year Authors
+ Approximation theorems for the Schr\"odinger equation and quantum vortex reconnection 2019 Alberto Enciso
Daniel Peralta‐Salas
+ Approximation theorems for the Schrödinger equation and quantum vortex reconnection 2019 Alberto Enciso
Daniel Peralta‐Salas
+ PDF Chat Vortex reconnections in classical and quantum fluids 2021 Alberto Enciso
Daniel Peralta‐Salas
+ PDF Chat Quantum vortex reconnections 2012 Simone Zuccher
Marco Caliari
Andrew W. Baggaley
Carlo F. Barenghi
+ PDF Chat Scattering for the Gross-Pitaevskii equation 2006 Stephen J. Gustafson
Kenji Nakanishi
Tai‐Peng Tsai
+ Ondes progressives de l’équation de Gross–Pitaevskii non locale : analyse et simulations 2019 Pierre Mennuni
+ PDF Chat Deriving the Gross-Pitaevskii equation 2014 Niels Benedikter
+ PDF Chat Isolated singularities of the Schrödinger equation with a good potential 1989 Juan Luís Vázquez
Cecilia Yarur
+ Travelling waves for the Gross-Pitaevskii equation in dimension larger than two. 2004 David Chiron
+ PDF Chat Vortex helices for the Gross-Pitaevskii equation 2005 David Chiron
+ Numerical study of the Gross-Pitaevskii equation on a two-dimensional ring and vortex nucleation 2024 Quentin Chauleur
Radu Chicireanu
Guillaume Dujardin
Jean Claude Garreau
Adam Rançon
+ PDF Chat Adiabatic theorem for the Gross–Pitaevskii equation 2017 Zhou Gang
Philip Grech
+ A dipolar Gross-Pitaevskii equation with quantum fluctuations: Self-bound states 2018 Yongming Luo
Athanasios Stylianou
+ PDF Chat The Gross–Pitaevskii Hierarchy on General Rectangular Tori 2015 Sebastian Herr
Vedran Sohinger
+ PDF Chat Torus quantum vortex knots in the Gross-Pitaevskii model for Bose-Einstein condensates 2014 Davide Proment
M. Onorato
Carlo F. Barenghi
+ Travelling waves for the Gross–Pitaevskii equation in dimension larger than two 2004 David Chiron
+ SIMULATING ROTATING BEC: VORTICES FORMATION AND OVER-CRITICAL ROTATIONS 2008 Siu A. Chin
+ PDF Chat Derivation of the Gross‐Pitaevskii hierarchy for the dynamics of Bose‐Einstein condensate 2006 László Erdős
Benjamin Schlein
Horng‐Tzer Yau
+ PDF Chat On the linear wave regime of the Gross-Pitaevskii equation 2010 Fabrice Béthuel
Raphaël Danchin
Didier Smets
+ PDF Chat Super Bloch oscillation in a<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:math>symmetric system 2016 Zalihe Ozcakmakli
C. Yüce