Applications of the landscape function for Schrödinger operators with singular potentials and irregular magnetic fields

Type: Preprint

Publication Date: 2021-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.2107.14103

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Applications of the landscape function for Schrödinger operators with singular potentials and irregular magnetic fields 2024 Bruno Poggi
+ PDF Chat Magnetic Schrödinger operators and landscape functions 2023 Jeremy G. Hoskins
Hadrian Quan
Stefan Steinerberger
+ Magnetic Schrödinger operators and landscape functions 2022 Jeremy G. Hoskins
Hadrian Quan
Stefan Steinerberger
+ Pointwise eigenvector estimates by landscape functions: some variations on the Filoche--Mayboroda--van den Berg bound 2023 Delio Mugnolo
+ PDF Chat On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations 2019 Piero D’Ancona
+ PDF Chat Pointwise eigenvector estimates by landscape functions: Some variations on the Filoche–Mayboroda–van den Berg bound 2023 Delio Mugnolo
+ Sharp $L^2$ estimate of Schrödinger maximal function in higher dimensions 2018 Xiumin Du
Ruixiang Zhang
+ Exponential decay estimates for fundamental solutions of Schr\"odinger-type operators 2018 Svitlana Mayboroda
Bruno Poggi
+ Critical Perturbations for Second Order Elliptic Operators. Part II: Non-tangential maximal function estimates 2023 Simon Bortz
Steve Hofmann
José Luis Luna García
Svitlana Mayboroda
Bruno Poggi
+ $A_p$ weights and Quantitative Estimates in the Schrödinger Setting 2016 Ji Li
Rob Rahm
Brett D. Wick
+ Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains 2002 Xing‐Bin Pan
Keng-Huat Kwek
+ PDF Chat Convergence rates for the Trotter-Kato splitting 2024 Simon Becker
Niklas Galke
Robert Salzmann
Lauritz van Luijk
+ Counting eigenvalues of Schrödinger operators using the landscape function 2023 Sven Bachmann
Richard Froese
Severin Schraven
+ PDF Chat Gauge Optimization and Spectral Properties of Magnetic Schrödinger Operators 2009 Vladimir Kondratiev
Vladimir Maz’ya
Mikhail Shubin
+ Exponential decay estimates for fundamental solutions of Schrödinger-type operators 2018 Svitlana Mayboroda
Bruno Poggi
+ PDF Chat Sharp $L^2$ estimate of Schr\"odinger maximal function in higher dimensions 2018 Xiumin Du
Ruixiang Zhang
+ PDF Chat Spectral properties of the gradient operator with nonconstant coefficients 2024 Fabrizio Colombo
Francesco Mantovani
Peter Schlosser
+ PDF Chat Sharp Semiclassical Spectral Asymptotics for Local Magnetic Schrödinger Operators on $${\mathbb {R}}^d$$ Without Full Regularity 2024 Søren Mikkelsen
+ Sharp $L^2$ estimates of the Schrödinger maximal function in higher dimensions 2019 Xiumin Du
Ruixiang Zhang
+ PDF Chat Counting eigenvalues of Schrödinger operators using the landscape function 2024 Sven Bachmann
Richard Froese
Severin Schraven