Prior-Free Clock Auctions for Bidders with Interdependent Values

Type: Preprint
Publication Date: 2021-07-20
Citations: 1

Abstract

We study the problem of selling a good to a group of bidders with interdependent values in a prior-free setting. Each bidder has a signal that can take one of $k$ different values, and her value for the good is a weakly increasing function of all the bidders' signals. The bidders are partitioned into $\ell$ expertise-groups, based on how their signal can impact the values for the good, and we prove upper and lower bounds regarding the approximability of social welfare and revenue for a variety of settings, parameterized by $k$ and $\ell$. Our lower bounds apply to all ex-post incentive compatible mechanisms and our upper bounds are all within a small constant of the lower bounds. Our main results take the appealing form of ascending clock auctions and provide strong incentives by admitting the desired outcomes as obvious ex-post equilibria.

Locations

  • arXiv (Cornell University)
We study the problem of selling a good to a group of bidders with interdependent values in a prior-free setting. Each bidder has a signal that can take one of … We study the problem of selling a good to a group of bidders with interdependent values in a prior-free setting. Each bidder has a signal that can take one of $k$ different values, and her value for the good is a weakly increasing function of all the bidders' signals. The bidders are partitioned into $\ell$ expertise-groups, based on how their signal can impact the values for the good, and we prove upper and lower bounds regarding the approximability of social welfare and revenue for a variety of settings, parameterized by $k$ and $\ell$. Our lower bounds apply to all ex-post incentive compatible mechanisms and our upper bounds are all within a small constant of the lower bounds. Our main results take the appealing form of ascending clock auctions and provide strong incentives by admitting the desired outcomes as obvious ex-post equilibria.
We consider a setting where an auctioneer sells a single item to $n$ potential agents with {\em interdependent values}. That is, each agent has her own private signal, and the … We consider a setting where an auctioneer sells a single item to $n$ potential agents with {\em interdependent values}. That is, each agent has her own private signal, and the valuation of each agent is a known function of all $n$ private signals. This captures settings such as valuations for artwork, oil drilling rights, broadcast rights, and many more. In the interdependent value setting, all previous work has assumed a so-called {\sl single-crossing condition}. Single-crossing means that the impact of agent $i$'s private signal, $s_i$, on her own valuation is greater than the impact of $s_i$ on the valuation of any other agent. It is known that without the single-crossing condition an efficient outcome cannot be obtained. We study welfare maximization for interdependent valuations through the lens of approximation. We show that, in general, without the single-crossing condition, one cannot hope to approximate the optimal social welfare any better than the approximation given by assigning the item to a random bidder. Consequently, we introduce a relaxed version of single-crossing, {\sl $c$-single-crossing}, parameterized by $c\geq 1$, which means that the impact of $s_i$ on the valuation of agent $i$ is at least $1/c$ times the impact of $s_i$ on the valuation of any other agent ($c=1$ is single-crossing). Using this parameterized notion, we obtain a host of positive results. We propose a prior-free deterministic mechanism that gives an $(n-1)c$-approximation guarantee to welfare. We then show that a random version of the proposed mechanism gives a prior-free universally truthful $2c$-approximation to the optimal welfare for any concave $c$-single crossing setting (and a $2\sqrt{n}c^{3/2}$-approximation in the absence of concavity). We extend this mechanism to a universally truthful mechanism that gives $O(c^2)$-approximation to the optimal revenue.
In a single-parameter mechanism design problem, a provider is looking to sell a service to a group of potential buyers. Each buyer $i$ has a private value $v_i$ for receiving … In a single-parameter mechanism design problem, a provider is looking to sell a service to a group of potential buyers. Each buyer $i$ has a private value $v_i$ for receiving the service and a feasibility constraint restricts which sets of buyers can be served simultaneously. Recent work in economics introduced clock auctions as a superior class of auctions for this problem, due to their transparency, simplicity, and strong incentive guarantees. Subsequent work focused on evaluating the social welfare approximation guarantees of these auctions, leading to strong impossibility results: in the absence of prior information regarding the buyers' values, no deterministic clock auction can achieve a bounded approximation, even for simple feasibility constraints with only two maximal feasible sets. We show that these negative results can be circumvented by using prior information or by leveraging randomization. We provide clock auctions that give a $O(\log\log k)$ approximation for general downward-closed feasibility constraints with $k$ maximal feasible sets for three different information models, ranging from full access to the value distributions to complete absence of information. The more information the seller has, the simpler these auctions are. Under full access, we use a particularly simple deterministic clock auction, called a single-price clock auction, which is only slightly more complex than posted price mechanisms. In this auction, each buyer is offered a single price and a feasible set is selected among those who accept their offers. In the other extreme, where no prior information is available, this approximation guarantee is obtained using a complex randomized clock auction. In addition to our main results, we propose a parameterization that interpolates between single-price clock auctions and general clock auctions, paving the way for an exciting line of future research.
A central problem in Microeconomics is to design auctions with good revenue properties. In this setting, the bidders' valuations for the items are private knowledge, but they are drawn from … A central problem in Microeconomics is to design auctions with good revenue properties. In this setting, the bidders' valuations for the items are private knowledge, but they are drawn from publicly known prior distributions. The goal is to find a truthful auction (no bidder can gain in utility by misreporting her valuation) that maximizes the expected revenue. Naturally, the optimal-auction is sensitive to the prior distributions. An intriguing question is to design a truthful auction that is oblivious to these priors, and yet manages to get a constant factor of the optimal revenue. Such auctions are called prior-free. Goldberg et al. presented a constant-approximate prior-free auction when there are identical copies of an item available in unlimited supply, bidders are unit-demand, and their valuations are drawn from i.i.d. distributions. The recent work of Leonardi et al. [STOC 2012] generalized this problem to non i.i.d. bidders, assuming that the auctioneer knows the ordering of their reserve prices. Leonardi et al. proposed a prior-free auction that achieves a $O(\log^* n)$ approximation. We improve upon this result, by giving the first prior-free auction with constant approximation guarantee.
We consider the single-item interdependent value setting, where there is a monopolist, $n$ buyers, and each buyer has a private signal $s_i$ describing a piece of information about the item. … We consider the single-item interdependent value setting, where there is a monopolist, $n$ buyers, and each buyer has a private signal $s_i$ describing a piece of information about the item. Each bidder $i$ also has a valuation function $v_i(s_1,\ldots,s_n)$ mapping the (private) signals of all buyers to a positive real number representing their value for the item. This setting captures scenarios where the item's information is asymmetric or dispersed among agents, such as in competitions for oil drilling rights, or in auctions for art pieces. Due to the increased complexity of this model compared to standard private values, it is generally assumed that each bidder's valuation function $v_i$ is public knowledge. But in many situations, the seller may not know how a bidder aggregates signals into a valuation. In this paper, we design mechanisms that guarantee approximately-optimal social welfare while satisfying ex-post incentive compatibility and individual rationality for the case where the valuation functions are private to the bidders. When the valuations are public, it is possible for optimal social welfare to be attained by a deterministic mechanism under a single-crossing condition. In contrast, when the valuations are the bidders' private information, we show that no finite bound can be achieved by any deterministic mechanism even under single-crossing. Moreover, no randomized mechanism can guarantee better than an $n$-approximation. We thus consider valuation functions that are submodular over signals (SOS), introduced in the context of combinatorial auctions in a recent breakthrough paper by Eden et al. [EC'19]. Our main result is an $O(\log^2 n)$-approximation for buyers with private signals and valuations under the SOS condition. We also give a tight $\Theta(k)$-approximation for the case each agent's valuation depends on at most $k$ other signals even for unknown $k$.
In a single-parameter mechanism design problem, a provider is looking to sell some service to a group of potential buyers. Each buyer i has a private value vi for receiving … In a single-parameter mechanism design problem, a provider is looking to sell some service to a group of potential buyers. Each buyer i has a private value vi for receiving this service, and some feasibility constraint restricts which subsets of buyers can be served simultaneously. Recent work in economics introduced (deferred-acceptance) clock auctions as a superior class of auctions for this problem, due to their transparency, simplicity, and very strong incentive guarantees. Subsequent work in computer science focused on evaluating these auctions with respect to their social welfare approximation guarantees, leading to strong impossibility results: in the absence of prior information regarding the buyers' values, no deterministic clock auction can achieve a bounded approximation, even for simple feasibility constraints with only two maximal feasible sets.
The celebrated model of auctions with interdependent valuations, introduced by Milgrom and Weber in 1982, has been studied almost exclusively under private signals $s_{1}, \ldots, s_{n}$ of the n bidders … The celebrated model of auctions with interdependent valuations, introduced by Milgrom and Weber in 1982, has been studied almost exclusively under private signals $s_{1}, \ldots, s_{n}$ of the n bidders and public valuation functions $v_{i}\left(s_{1}, \ldots, s_{n}\right)$. Recent work in TCS has shown that this setting admits a constant approximation to the optimal social welfare if the valuations satisfy a natural property called submodularity over signals (SOS). More recently, Eden et al. (2022) have extended the analysis of interdependent valuations to include settings with private signals and private valuations, and established $O\left(\log ^{2} n\right)$-approximation for SOS valuations. In this paper we show that this setting admits a constant factor approximation, settling the open question raised by Eden et al. (2022).
We study the limits of an information intermediary in the classical Bayesian auction, where a revenue-maximizing seller sells one item to $n$ buyers with independent private values. In addition, we … We study the limits of an information intermediary in the classical Bayesian auction, where a revenue-maximizing seller sells one item to $n$ buyers with independent private values. In addition, we have an intermediary who knows the buyers' private values, and can map these to a public signal so as to increase consumer surplus. This model generalizes the single-buyer setting proposed by Bergemann, Brooks, and Morris, who present a signaling scheme that raises the optimal consumer surplus, by guaranteeing that the item is always sold and the seller gets the same revenue as without signaling. Our work aims to understand how this result ports to the setting with multiple buyers. We likewise define the benchmark for the optimal consumer surplus: one where the auction is efficient (i.e., the item is always sold to the highest-valued buyer) and the revenue of the seller is unchanged. We show that no signaling scheme can guarantee this benchmark even for $n=2$ buyers with $2$-point valuation distributions. Indeed, no signaling scheme can be efficient while preserving any non-trivial fraction of the original consumer surplus, and no signaling scheme can guarantee consumer surplus better than a factor of $\frac{1}{2}$ compared to the benchmark. These impossibility results are existential (beyond computational), and provide a sharp separation between the single and multi-buyer settings. In light of this impossibility, we develop signaling schemes with good approximation guarantees to the benchmark. Our main technical result is an $O(1)$-approximation for i.i.d. regular buyers, via signaling schemes that are conceptually simple and computable in polynomial time. We also present an extension to the case of general independent distributions.
The celebrated model of auctions with interdependent valuations, introduced by Milgrom and Weber in 1982, has been studied almost exclusively under private signals $s_1, \ldots, s_n$ of the $n$ bidders … The celebrated model of auctions with interdependent valuations, introduced by Milgrom and Weber in 1982, has been studied almost exclusively under private signals $s_1, \ldots, s_n$ of the $n$ bidders and public valuation functions $v_i(s_1, \ldots, s_n)$. Recent work in TCS has shown that this setting admits a constant approximation to the optimal social welfare if the valuations satisfy a natural property called submodularity over signals (SOS). More recently, Eden et al. (2022) have extended the analysis of interdependent valuations to include settings with private signals and private valuations, and established $O(\log^2 n)$-approximation for SOS valuations. In this paper we show that this setting admits a constant factor approximation, settling the open question raised by Eden et al. (2022).
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Private Interdependent ValuationsAlon Eden, Kira Goldner, and Shuran ZhengAlon Eden, Kira Goldner, and Shuran … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Private Interdependent ValuationsAlon Eden, Kira Goldner, and Shuran ZhengAlon Eden, Kira Goldner, and Shuran Zhengpp.2920 - 2939Chapter DOI:https://doi.org/10.1137/1.9781611977073.113PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract We consider the single-item interdependent value setting, where there is a single item sold by a monopolist, n buyers, and each buyer has a private signal si describing a piece of information about the item. Additionally, each bidder i has a valuation function vi(s1, …, sn) mapping the (private) signals of all buyers into a positive real number representing their value for the item. This setting captures scenarios where the item's information is asymmetric or dispersed among agents, such as in competitions for oil drilling rights, or in auctions for art pieces. Due to the increased complexity of this model compared to the standard private values model, it is generally assumed that each bidder's valuation function vi is public knowledge to the seller or all other buyers. But in many situations, the seller may not know the bidders' valuation functions—how a bidder aggregates signals into a valuation is often their private information. In this paper, we design mechanisms that guarantee approximately-optimal social welfare while satisfying ex-post incentive compatibility and individually rationality for the case where the valuation functions are private to the bidders, and thus may be strategically misreported to the seller. When the valuations are public, it is possible for optimal social welfare to be attained by a deterministic mechanism when the valuations satisfy a single-crossing condition. In contrast, when the valuations are the bidders' private information, we show that no finite bound on the social welfare can be achieved by any deterministic mechanism even under single-crossing. Moreover, no randomized mechanism can guarantee better than n-approximation. We thus consider valuation functions that are submodular over signals (SOS), introduced in the context of combinatorial auctions in a recent breakthrough paper by Eden et al. [EC'19]. Our main result is an O(log2 n)-approximation randomized mechanism for buyers with private signals and valuations under the SOS condition. We also give a tight Θ(k)-approximation mechanism for the case each agent's valuation depends on at most k other signals even for unknown k. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-707-3 https://doi.org/10.1137/1.9781611977073Book Series Name:ProceedingsBook Code:PRDA22Book Pages:xvii + 3771
We consider prior-free auctions for revenue and welfare maximization when agents have a common budget. The abstract environments we consider are ones where there is a downward-closed and symmetric feasibility … We consider prior-free auctions for revenue and welfare maximization when agents have a common budget. The abstract environments we consider are ones where there is a downward-closed and symmetric feasibility constraint on the probabilities of service of the agents. These environments include position auctions where slots with decreasing click-through rates are auctioned to advertisers. We generalize and characterize the envy-free benchmark from Hartline and Yan (2011) to settings with budgets and characterize the optimal envy-free outcomes for both welfare and revenue. We give prior-free mechanisms that approximate these benchmarks. A building block in our mechanism is a clinching auction for position auction environments. This auction is a generalization of the multi-unit clinching auction of Dobzinski et al. (2008) and a special case of the polyhedral clinching auction of Goel et al. (2012). For welfare maximization, we show that this clinching auction is a good approximation to the envy-free optimal welfare for position auction environments. For profit maximization, we generalize the random sampling profit extraction auction from Fiat et al. (2002) for digital goods to give a 10.0-approximation to the envy-free optimal revenue in symmetric, downward-closed environments. The profit maximization question is of interest even without budgets and our mechanism is a 7.5-approximation which improving on the 30.4 bound of Ha and Hartline (2012).
This paper considers prior-independent mechanism design, namely identifying a single mechanism that has near optimal performance on every prior distribution. We show that mechanisms with truthtelling equilibria, a.k.a., revelation mechanisms, … This paper considers prior-independent mechanism design, namely identifying a single mechanism that has near optimal performance on every prior distribution. We show that mechanisms with truthtelling equilibria, a.k.a., revelation mechanisms, do not always give optimal prior-independent mechanisms and we define the revelation gap to quantify the non-optimality of revelation mechanisms. This study suggests that it is important to develop a theory for the design of non-revelation mechanisms. Our analysis focuses on welfare maximization in single-item auctions for agents with budgets and a natural regularity assumption on their distribution of values. The all-pay auction (a non-revelation mechanism) is the Bayesian optimal mechanism; as it is prior-independent it is also the prior-independent optimal mechanism (a 1-approximation). We prove a lower bound on the prior-independent approximation of revelation mechanisms of 1.013 and that the clinching auction (a revelation mechanism) is a prior-independent $e \approx 2.714$ approximation. Thus the revelation gap for single-item welfare maximization with public budget agents is in $[1.013, e]$. Some of our analyses extend to the revenue objective, position environments, and irregular distributions.
Bayesian persuasion is the study of information sharing policies among strategic agents. A prime example is signaling in online ad auctions: what information should a platform signal to an advertiser … Bayesian persuasion is the study of information sharing policies among strategic agents. A prime example is signaling in online ad auctions: what information should a platform signal to an advertiser regarding a user when selling the opportunity to advertise to her? Practical considerations such as preventing discrimination, protecting privacy or acknowledging limited attention of the information receiver impose constraints on information sharing. In this work, we propose and analyze a simple way to mathematically model such constraints as restrictions on Receiver's admissible posterior beliefs. We consider two families of constraints - ex ante and ex post, where the latter limits each instance of Sender-Receiver communication, while the former more general family can also pose restrictions in expectation. For the ex ante family, Doval and Skreta establish the existence of an optimal signaling scheme with a small number of signals - at most the number of constraints plus the number of states of nature; we show this result is tight and provide an alternative proof for it. For the ex post family, we tighten a bound of Volund, showing that the required number of signals is at most the number of states of nature, as in the original Kamenica-Gentzkow setting. As our main algorithmic result, we provide an additive bi-criteria FPTAS for an optimal constrained signaling scheme assuming a constant number of states; we improve the approximation to single-criteria under a Slater-like regularity condition. The FPTAS holds under standard assumptions; relaxed assumptions yield a PTAS. Finally, we bound the ratio between Sender's optimal utility under convex ex ante constraints and the corresponding ex post constraints. This bound applies to finding an approximately welfare-maximizing constrained signaling scheme in ad auctions.
Bayesian persuasion, as introduced by Kamenica and Gentzkow in 2011, is the study of information sharing policies among strategic agents. A prime example is signaling in online ad auctions: what … Bayesian persuasion, as introduced by Kamenica and Gentzkow in 2011, is the study of information sharing policies among strategic agents. A prime example is signaling in online ad auctions: what information should a platform signal to an advertiser regarding a user when selling the opportunity to advertise to her? Practical considerations such as preventing discrimination, protecting privacy or acknowledging limited attention of the information receiver impose constraints on information sharing. We propose a simple way to mathematically model such constraints as restrictions on Receiver's admissible posterior beliefs. We consider two families of constraints - ex ante and ex post; the latter limits each instance of Sender-Receiver communication, while the former more general family can also pose restrictions in expectation. For the ex ante family, a result of Doval and Skreta (2018) establishes the existence of an optimal signaling scheme with a small number of signals - at most the number of constraints plus the number of states of nature - and we show this result is tight. For the ex post family, we tighten the previous bound of Vølund (2018), showing that the required number of signals is at most the number of states of nature, as in the original Kamenica-Gentzkow setting. As our main algorithmic result, we provide an additive bi-criteria FPTAS for an optimal constrained signaling scheme assuming a constant number of states of nature; we improve the approximation to single-criteria under a Slater-like regularity condition. The FPTAS holds under standard assumptions, and more relaxed assumptions yield a PTAS. We then establish a bound on the ratio between Sender's optimal utility under convex ex ante constraints and the corresponding ex post constraints. We demonstrate how this result can be applied to find an approximately welfare-maximizing constrained signaling scheme in ad auctions.
We study auction design within the widely acclaimed model of interdependent values, introduced by Milgrom and Weber [1982]. In this model, every bidder $i$ has a private signal $s_i$ for … We study auction design within the widely acclaimed model of interdependent values, introduced by Milgrom and Weber [1982]. In this model, every bidder $i$ has a private signal $s_i$ for the item for sale, and a public valuation function $v_i(s_1,\ldots,s_n)$ which maps every vector of private signals (of all bidders) into a real value. A recent line of work established the existence of approximately-optimal mechanisms within this framework, even in the more challenging scenario where each bidder's valuation function $v_i$ is also private. This body of work has primarily focused on single-item auctions with two natural classes of valuations: those exhibiting submodularity over signals (SOS) and $d$-critical valuations. In this work we advance the state of the art on interdependent values with private valuation functions, with respect to both SOS and $d$-critical valuations. For SOS valuations, we devise a new mechanism that gives an improved approximation bound of $5$ for single-item auctions. This mechanism employs a novel variant of an "eating mechanism", leveraging LP-duality to achieve feasibility with reduced welfare loss. For $d$-critical valuations, we broaden the scope of existing results beyond single-item auctions, introducing a mechanism that gives a $(d+1)$-approximation for any environment with matroid feasibility constraints on the set of agents that can be simultaneously served. Notably, this approximation bound is tight, even with respect to single-item auctions.
This paper considers prior-independent mechanism design, namely identifying a single mechanism that has near optimal performance on every prior distribution. We show that mechanisms with truthtelling equilibria, a.k.a., revelation mechanisms, … This paper considers prior-independent mechanism design, namely identifying a single mechanism that has near optimal performance on every prior distribution. We show that mechanisms with truthtelling equilibria, a.k.a., revelation mechanisms, do not always give optimal prior-independent mechanisms and we define the revelation gap to quantify the non-optimality of revelation mechanisms. This study suggests that it is important to develop a theory for the design of non-revelation mechanisms. Our analysis focuses on welfare maximization by single-item auctions for agents with budgets and a natural regularity assumption on their distribution of values. The all-pay auction (a non-revelation mechanism) is the Bayesian optimal mechanism; as it is prior-independent it is also the prior-independent optimal mechanism (a 1-approximation). We prove a lower bound on the prior-independent approximation of revelation mechanisms of 1.013 and that the clinching auction (a revelation mechanism) is a prior-independent e ≈ 2.714 approximation. Thus the revelation gap for single-item welfare maximization with public budget agents is in [1.013, e]. Some of our analyses extend to the revenue objective, position environments, and irregular distributions.
We study the design of prior-independent auctions in a setting with heterogeneous bidders. In particular, we consider the setting of selling to $n$ bidders whose values are drawn from $n$ … We study the design of prior-independent auctions in a setting with heterogeneous bidders. In particular, we consider the setting of selling to $n$ bidders whose values are drawn from $n$ independent but not necessarily identical distributions. We work in the robust auction design regime, where we assume the seller has no knowledge of the bidders' value distributions and must design a mechanism that is prior-independent. While there have been many strong results on prior-independent auction design in the i.i.d. setting, not much is known for the heterogeneous setting, even though the latter is of significant practical importance. Unfortunately, no prior-independent mechanism can hope to always guarantee any approximation to Myerson's revenue in the heterogeneous setting; similarly, no prior-independent mechanism can consistently do better than the second-price auction. In light of this, we design a family of (parametrized) randomized auctions which approximates at least one of these benchmarks: For heterogeneous bidders with regular value distributions, our mechanisms either achieve a good approximation of the expected revenue of an optimal mechanism (which knows the bidders' distributions) or exceeds that of the second-price auction by a certain multiplicative factor. The factor in the latter case naturally trades off with the approximation ratio of the former case. We show that our mechanism is optimal for such a trade-off between the two cases by establishing a matching lower bound. Our result extends to selling $k$ identical items to heterogeneous bidders with an additional $O\big(\ln^2 k\big)$-factor in our trade-off between the two cases.
We construct prior-free auctions with constant-factor approximation guarantees with ordered bidders, in both unlimited and limited supply settings. We compare the expected revenue of our auctions on a bid vector … We construct prior-free auctions with constant-factor approximation guarantees with ordered bidders, in both unlimited and limited supply settings. We compare the expected revenue of our auctions on a bid vector to the monotone price benchmark, the maximum revenue that can be obtained from a bid vector using supply-respecting prices that are nonincreasing in the bidder ordering and bounded above by the second-highest bid. As a consequence, our auctions are simultaneously near-optimal in a wide range of Bayesian multi-unit environments.
We construct prior-free auctions with constant-factor approximation guarantees with ordered bidders, in both unlimited and limited supply settings. We compare the expected revenue of our auctions on a bid vector … We construct prior-free auctions with constant-factor approximation guarantees with ordered bidders, in both unlimited and limited supply settings. We compare the expected revenue of our auctions on a bid vector to the monotone price benchmark, the maximum revenue that can be obtained from a bid vector using supply-respecting prices that are nonincreasing in the bidder ordering and bounded above by the second-highest bid. As a consequence, our auctions are simultaneously near-optimal in a wide range of Bayesian multi-unit environments.
We study revenue maximization in settings where agents' values are interdependent: each agent receives a signal drawn from a correlated distribution and agents' values are functions of all of the … We study revenue maximization in settings where agents' values are interdependent: each agent receives a signal drawn from a correlated distribution and agents' values are functions of all of the signals. We introduce a variant of the generalized VCG auction with reserve prices and random admission, and show that this auction gives a constant approximation to the optimal expected revenue in matroid environments. Our results do not require any assumptions on the signal distributions, however, they require the value functions to satisfy a standard single-crossing property and a concavity-type condition.
We consider a setting where an auctioneer sells a single item to n potential agents with interdependent values. That is, each agent has her own private signal, and the valuation … We consider a setting where an auctioneer sells a single item to n potential agents with interdependent values. That is, each agent has her own private signal, and the valuation of each agent is a known function of all n private signals. This captures settings such as valuations for oil drilling rights, broadcast rights, pieces of art, and many more.