Unifying and benchmarking state-of-the-art quantum error mitigation techniques

Type: Article

Publication Date: 2023-06-06

Citations: 23

DOI: https://doi.org/10.22331/q-2023-06-06-1034

Abstract

Error mitigation is an essential component of achieving a practical quantum advantage in the near term, and a number of different approaches have been proposed. In this work, we recognize that many state-of-the-art error mitigation methods share a common feature: they are data-driven, employing classical data obtained from runs of different quantum circuits. For example, Zero-noise extrapolation (ZNE) uses variable noise data and Clifford-data regression (CDR) uses data from near-Clifford circuits. We show that Virtual Distillation (VD) can be viewed in a similar manner by considering classical data produced from different numbers of state preparations. Observing this fact allows us to unify these three methods under a general data-driven error mitigation framework that we call UNIfied Technique for Error mitigation with Data (UNITED). In certain situations, we find that our UNITED method can outperform the individual methods (i.e., the whole is better than the individual parts). Specifically, we employ a realistic noise model obtained from a trapped ion quantum computer to benchmark UNITED, as well as other state-of-the-art methods, in mitigating observables produced from random quantum circuits and the Quantum Alternating Operator Ansatz (QAOA) applied to Max-Cut problems with various numbers of qubits, circuit depths and total numbers of shots. We find that the performance of different techniques depends strongly on shot budgets, with more powerful methods requiring more shots for optimal performance. For our largest considered shot budget (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mn>10</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mn>10</mml:mn></mml:mrow></mml:msup></mml:math>), we find that UNITED gives the most accurate mitigation. Hence, our work represents a benchmarking of current error mitigation methods and provides a guide for the regimes when certain methods are most useful.

Locations

  • Quantum - View - PDF
  • arXiv (Cornell University) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View

Similar Works

Action Title Year Authors
+ Unifying and benchmarking state-of-the-art quantum error mitigation techniques 2021 Daniel Bultrini
Max Hunter Gordon
Piotr Czarnik
Andrew Arrasmith
M. Cerezo
Patrick J. Coles
Łukasz Cincio
+ PDF Chat Unified approach to data-driven quantum error mitigation 2021 Angus Lowe
Max Hunter Gordon
Piotr Czarnik
Andrew Arrasmith
Patrick J. Coles
Łukasz Cincio
+ Robust design under uncertainty in quantum error mitigation 2023 Piotr Czarnik
Michael McKerns
Andrew Sornborger
Łukasz Cincio
+ PDF Chat Can Error Mitigation Improve Trainability of Noisy Variational Quantum Algorithms? 2024 Samson Wang
Piotr Czarnik
Andrew Arrasmith
M. Cerezo
Łukasz Cincio
Patrick J. Coles
+ Can Error Mitigation Improve Trainability of Noisy Variational Quantum Algorithms? 2021 Samson Wang
Piotr Czarnik
Andrew Arrasmith
M. Cerezo
Łukasz Cincio
Patrick J. Coles
+ PDF Chat Mitiq: A software package for error mitigation on noisy quantum computers 2022 Ryan LaRose
Andrea Mari
Sarah Kaiser
Peter J. Karalekas
Andre A. Alves
Piotr Czarnik
Mohamed El Mandouh
Max Hunter Gordon
Yousef Hindy
Aaron Robertson
+ Mitiq: A software package for error mitigation on noisy quantum computers 2020 Ryan LaRose
Andrea Mari
Sarah Kaiser
Peter J. Karalekas
Andre A. Alves
Piotr Czarnik
Mohamed El Mandouh
Max Hunter Gordon
Yousef Hindy
Aaron Robertson
+ PDF Chat Evaluating the resilience of variational quantum algorithms to leakage noise 2022 Chen Ding
Xiao-Yue Xu
Shuo Zhang
He-Liang Huang
Wan-Su Bao
+ Qubit-efficient exponential suppression of errors 2021 Piotr Czarnik
Andrew Arrasmith
Łukasz Cincio
Patrick J. Coles
+ Qubit-efficient exponential suppression of errors 2021 Piotr Czarnik
Andrew Arrasmith
Łukasz Cincio
Patrick J. Coles
+ Circuit-Noise-Resilient Virtual Distillation 2023 Xiao-Yue Xu
Ding Chen
Shuo Zhang
Wan-Su Bao
He-Liang Huang
+ PDF Chat Automated quantum error mitigation based on probabilistic error reduction 2022 Benjamin McDonough
Andrea Mari
Nathan Shammah
Nathaniel T. Stemen
Misty Wahl
William J. Zeng
Peter P. Orth
+ PDF Chat Automated quantum error mitigation based on probabilistic error reduction 2022 Benjamin McDonough
Andrea Mari
Nathan Shammah
Nathaniel T. Stemen
Misty Wahl
William J. Zeng
Peter P. Orth
+ Evaluating the Resilience of Variational Quantum Algorithms to Leakage Noise 2022 Ding Chen
Xiaoyue Xu
Shuo Zhang
Wan-Su Bao
He-Liang Huang
+ Flexible Error Mitigation of Quantum Processes with Data Augmentation Empowered Neural Model 2023 Manwen Liao
Yan Zhu
Giulio Chiribella
Yuxiang Yang
+ PDF Chat Error mitigation with Clifford quantum-circuit data 2021 Piotr Czarnik
Andrew Arrasmith
Patrick J. Coles
Łukasz Cincio
+ Error mitigation with Clifford quantum-circuit data 2021 Piotr Czarnik
Andrew Arrasmith
Patrick J. Coles
Łukasz Cincio
+ Error mitigation with Clifford quantum-circuit data 2020 Piotr Czarnik
Andrew Arrasmith
Patrick J. Coles
Łukasz Cincio
+ Exponentially tighter bounds on limitations of quantum error mitigation 2022 Yihui Quek
Daniel Stilck França
Sumeet Khatri
Johannes Jakob Meyer
Jens Eisert
+ PDF Chat Testing Platform-Independent Quantum Error Mitigation on Noisy Quantum Computers 2023 Vincent M. Russo
Andrea Mari
Nathan Shammah
Ryan LaRose
William J. Zeng