Global well-posedness for the derivative nonlinear Schr\"odinger equation

Type: Preprint

Publication Date: 2022-01-01

Citations: 37

Locations

  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ Global Well-Posedness on a generalized derivative nonlinear Schr\"odinger equation 2016 Noriyoshi Fukaya
Masayuki Hayashi
Takahisa Inui
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^{2}(\R)$ 2024 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica ViƟan
+ Global Solvability of the Derivative Nonlinear Schrodinger Equation 1989 Jyh-Hao Lee
+ Global Well-posedness for the Derivative Nonlinear Schrödinger Equation Through Inverse Scattering 2017 Jiaqi Liu
+ PDF Chat Global well-posedness on the derivative nonlinear Schrödinger equation 2015 Yifei Wu
+ Global well-posedness of a 2D nonlinear Schrdinger equation 2003 Zhang Zhi
+ Well-posedness of the one-dimensional derivative nonlinear Schrödinger equation 2018 Răzvan MoƟincat
+ Global well-posedness for the derivative nonlinear Schrödinger equation 2020 Hajer Bahouri
Galina Perelman
+ Global well-posedness and scattering for a class of nonlinear Dunkl–Schrödinger equations 2009 Hatem Mejjaolı
+ Well-Posedness for the Coupled Schr?dinger Equations with Derivative 2024 ć·§æŹŁ 李
+ Global well-posedness for the derivative nonlinear Schr\"{o}dinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ Global well-posedness for the derivative nonlinear Schrödinger equation 2022 Hajer Bahouri
Galina Perelman
+ Global Well-Posedness and Analytic Smoothing Effect for the Dissipative Nonlinear Schrödinger Equations 2018 Gaku Hoshino
+ Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space 2013 Yifei Wu
+ Local Well-Posedness for the Derivative Nonlinear Schrödinger Equation in Besov spaces 2016 Cai Constantin Cloos
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ PDF Chat Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$ 2016 Zihua Guo
Yifei Wu
+ PDF Chat Local well posedness of nonlinear Schrödinger equations 1995 Carlos E. Kenig
+ Global solutions of nonlinear Schrödinger equations 2017 Martin Schechter
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^2(\mathbb{R})$ 2022 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica ViƟan