The geometry and topology of steady Euler flows, integrability and singular geometric structures

Type: Dissertation

Publication Date: 2021-05-26

Citations: 0

DOI: https://doi.org/10.5821/dissertation-2117-349573

Locations

  • UPCommons institutional repository (Universitat Politècnica de Catalunya) - View - PDF

Similar Works

Action Title Year Authors
+ Contact Topology and Hydrodynamics 1997 John B. Etnyre
Robert Ghrist
+ Universality of Euler flows and flexibility of Reeb embeddings 2023 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
Francisco Presas
+ Universality of Euler flows and flexibility of Reeb embeddings 2019 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
Francisco Presas
+ PDF Chat Euler flows and singular geometric structures 2019 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
+ Steady Euler flows on $\mathbb{R}^3$ with wild and universal dynamics 2022 Pierre Berger
Anna Florio
Daniel Peralta‐Salas
+ A Short Course in Differential Topology 2018 Bjørn Ian Dundas
+ Contact type solutions and non-mixing of the 3D Euler equations 2023 Robert Cardona
Francisco Torres de Lizaur
+ PDF Chat Steady Euler Flows on $${\mathbb {R}}^3$$ with Wild and Universal Dynamics 2023 Pierre Berger
Anna Florio
Daniel Peralta‐Salas
+ PDF Chat Contact topology and hydrodynamics III: knotted orbits 2000 John B. Etnyre
Robert Ghrist
+ Lectures on controlled Reeb dynamics 2018 Hansjörg Geiges
+ Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture 2000 John B. Etnyre
Robert Ghrist
+ Geometry, Topology, and Dynamics 1998 François Lalonde
+ PDF Chat Controlled Reeb dynamics — Three lectures not in Cala Gonone 2019 Hansjörg Geiges
+ Contact foliations and generalised Weinstein conjectures 2024 Douglas Finamore
+ PDF Chat Steady Euler flows and Beltrami fields in high dimensions 2020 Robert Cardona
+ Looking at Euler flows through a contact mirror: Universality and undecidability 2023 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
+ PDF Chat Contact foliations and generalised Weinstein conjectures 2023 Douglas Finamore
+ PDF Chat Towards a Fluid computer 2024 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
+ PDF Chat Integrable Systems on Singular Symplectic Manifolds: From Local to Global 2021 Robert Cardona
Eva Miranda
+ Integrable systems on singular symplectic manifolds: From local to global 2020 Robert Cardona
Eva Miranda

Works That Cite This (0)

Action Title Year Authors