Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
XPDNet for MRI Reconstruction: an application to the 2020 fastMRI challenge.
Zaccharie Ramzi
,
Philippe Ciuciu
,
JeanâLuc Starck
Type:
Preprint
Publication Date:
2020-10-15
Citations:
5
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
XPDNet for MRI Reconstruction: an application to the 2020 fastMRI challenge
2020
Zaccharie Ramzi
Philippe Ciuciu
JeanâLuc Starck
+
Deep learning for fast MR imaging: a review for learning reconstruction from incomplete k-space data
2020
Shanshan Wang
Taohui Xiao
Qiegen Liu
Hairong Zheng
+
PDF
Chat
Deep Learning for Accelerated and Robust MRI Reconstruction: a Review
2024
Reinhard Heckel
Mathews Jacob
Akshay Chaudhari
Or Perlman
Efrat Shimron
+
Enhancing quality and speed in database-free neural network reconstructions of undersampled MRI with SCAMPI
2022
Thomas M. Siedler
Peter M. Jakob
Volker Herold
+
PDF
Chat
Enhancing quality and speed in databaseâfree neural network reconstructions of undersampled MRI with SCAMPI
2024
Thomas M. Siedler
Peter M. Jakob
Volker Herold
+
Deep MRI Reconstruction: Unrolled Optimization Algorithms Meet Neural Networks
2019
Dong Liang
Jing Cheng
Ziwen Ke
Leslie Ying
+
PDF
Chat
Advancing MRI Reconstruction: A Systematic Review of Deep Learning and Compressed Sensing Integration
2025
Mojtaba Safari
Zach Eidex
ChihâWei Chang
Richard L. J. Qiu
Xiaofeng Yang
+
PDF
Chat
Multi-Coil MRI Reconstruction ChallengeâAssessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations
2022
Youssef Beauferris
Jonas Teuwen
Dimitrios Karkalousos
Nikita Moriakov
Matthan W.A. Caan
George Yiasemis
LĂvia Rodrigues
Alexandre Lopes
HĂ©lio Pedrini
LetĂcia Rittner
+
PDF
Chat
Knowledge-driven deep learning for fast MR imaging: undersampled MR image reconstruction from supervised to un-supervised learning
2024
Shanshan Wang
Ruoyou Wu
Sen Jia
Alou Diakite
Cheng Li
Qiegen Liu
Leslie Ying
+
Learning Deep MRI Reconstruction Models from Scratch in Low-Data Regimes
2023
Salman UH Dar
Ćaban ĂztĂŒrk
Muzaffer Ăzbey
Tolga Ăukur
+
Multi-channel MR Reconstruction (MC-MRRec) Challenge - Comparing Accelerated MR Reconstruction Models and Assessing Their Genereralizability to Datasets Collected with Different Coils.
2020
Youssef Beauferris
Jonas Teuwen
Dimitrios Karkalousos
Nikita Moriakov
Matthan W.A. Caan
LĂvia Rodrigues
Alexandre Lopes
HĂ©lio Pedrini
LetĂcia Rittner
Maik Dannecker
+
PDF
Chat
Pruning Unrolled Networks (PUN) at Initialization for MRI Reconstruction Improves Generalization
2024
Shijun Liang
Evan Bell
Avrajit Ghosh
Saiprasad Ravishankar
+
PDF
Chat
State-of-the-art Machine Learning MRI Reconstruction in 2020: Results of the Second fastMRI Challenge
2020
Matthew J. Muckley
Bruno Riemenschneider
Alireza Radmanesh
Sunwoo Kim
Geunu Jeong
Jingyu Ko
Yohan Jun
Hyungseob Shin
Dosik Hwang
Mahmoud Mostapha
+
Multi-Coil MRI Reconstruction Challenge -- Assessing Brain MRI Reconstruction Models and their Generalizability to Varying Coil Configurations
2020
Youssef Beauferris
Jonas Teuwen
Dimitrios Karkalousos
Nikita Moriakov
Mattha Caan
George Yiasemis
LĂvia Rodrigues
Alexandre DĂas LĂłpes
HĂ©lio Pedrini
LetĂcia Rittner
+
$ÎŁ$-net: Systematic Evaluation of Iterative Deep Neural Networks for Fast Parallel MR Image Reconstruction
2019
Kerstin Hammernik
Jo Schlemper
Chen Qin
Jinming Duan
Ronald M. Summers
Daniel Rueckert
+
Can Un-trained Neural Networks Compete with Trained Neural Networks at Image Reconstruction?
2020
Mohammad Zalbagi Darestani
Reinhard Heckel
+
Is good old GRAPPA dead?
2021
Zaccharie Ramzi
Alexandre Vignaud
JeanâLuc Starck
Philippe Ciuciu
+
PDF
Chat
AI-Based Reconstruction for Fast MRIâA Systematic Review and Meta-Analysis
2022
Yutong Chen
CarolaâBibiane Schönlieb
PĂetro LiĂł
Tim Leiner
Pier Luigi Dragotti
Ge Wang
Daniel Rueckert
David Firmin
Guang Yang
+
fastMRI: An Open Dataset and Benchmarks for Accelerated MRI
2018
Jure Ćœbontar
Florian Knöll
Anuroop Sriram
Matthew J. Muckley
Mary Bruno
Aaron Defazio
Marc Parente
Krzysztof J. Geras
Joe Katsnelson
Hersh Chandarana
+
One for Multiple: Physics-informed Synthetic Data Boosts Generalizable Deep Learning for Fast MRI Reconstruction
2023
Zi Wang
Xiaotong Yu
Chengyan Wang
Weibo Chen
Jiazheng Wang
YingâHua Chu
Hongwei Sun
Rushuai Li
Peiyong Li
Fan Yang
Works That Cite This (5)
Action
Title
Year
Authors
+
PDF
Chat
Learning the sampling density in 2D SPARKLING MRI acquisition for optimized image reconstruction
2021
Chaithya Giliyar Radhakrishna
Zaccharie Ramzi
Philippe Ciuciu
+
PDF
Chat
Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction
2021
Matthew J. Muckley
Bruno Riemenschneider
Alireza Radmanesh
Sunwoo Kim
Geunu Jeong
Jingyu Ko
Yohan Jun
Hyungseob Shin
Dosik Hwang
Mahmoud Mostapha
+
PDF
Chat
Recurrent Variational Network: A Deep Learning Inverse Problem Solver applied to the task of Accelerated MRI Reconstruction
2022
George Yiasemis
JanâJakob Sonke
Clarisa SĂĄnchez
Jonas Teuwen
+
AAPM DL-Sparse-View CT Challenge Submission Report: Designing an Iterative Network for Fanbeam-CT with Unknown Geometry.
2021
Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
+
Can Un-trained Neural Networks Compete with Trained Neural Networks at Image Reconstruction?
2020
Mohammad Zalbagi Darestani
Reinhard Heckel
Works Cited by This (6)
Action
Title
Year
Authors
+
PDF
Chat
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
2010
Antonin Chambolle
Thomas Pock
+
fastMRI: An Open Dataset and Benchmarks for Accelerated MRI
2018
Jure Ćœbontar
Florian Knöll
Anuroop Sriram
Matthew J. Muckley
Mary Bruno
Aaron Defazio
Marc Parente
Krzysztof J. Geras
Joe Katsnelson
Hersh Chandarana
+
PDF
Chat
Multi-level Wavelet-CNN for Image Restoration
2018
Pengju Liu
Hongzhi Zhang
Kai Zhang
Liang Lin
Wangmeng Zuo
+
End-to-End Variational Networks for Accelerated MRI Reconstruction
2020
Anuroop Sriram
Jure Ćœbontar
Tullie Murrell
Aaron Defazio
C. Lawrence Zitnick
Nafissa Yakubova
Florian Knöll
Patricia M. Johnson
+
An Adaptive Intelligence Algorithm for Undersampled Knee MRI Reconstruction: Application to the 2019 fastMRI Challenge
2020
Nicola Pezzotti
Sahar Yousefi
Mohamed S. Elmahdy
Jeroen Hendrikus Fransiscus Van Gemert
Christophe SchĂŒlke
Mariya Doneva
Tim TolkerâNielsen
Sergey Kastryulin
Boudewijn P. F. Lelieveldt
Matthias J.P. van Osch
+
PDF
Chat
Learned Primal-Dual Reconstruction
2018
Jonas Adler
Ozan Ăktem