General Automation in Coq through Modular Transformations

Type: Paratext

Publication Date: 2021-07-11

Citations: 0

Locations

  • Electronic Proceedings in Theoretical Computer Science - View
  • arXiv (Cornell University) - View - PDF
  • Lirias (KU Leuven) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat General Automation in Coq through Modular Transformations 2021 Valentin Blot
Louise Dubois de Prisque
Chantal Keller
Pierre Vial
+ PDF Chat Compositional Pre-processing for Automated Reasoning in Dependent Type Theory 2023 Valentin Blot
Denis Cousineau
Enzo Crance
Louise Dubois de Prisque
Chantal Keller
Assia Mahboubi
Pierre Vial
+ Compositional pre-processing for automated reasoning in dependent type theory 2022 Valentin Blot
Denis Cousineau
Enzo Crance
Louise Dubois de Prisque
Chantal Keller
Assia Mahboubi
Pierre Vial
+ PDF Chat Towards Automatic Transformations of Coq Proof Scripts 2024 Nicolas Magaud
+ Towards Proof Repair in Cubical Agda 2023 Cosmo Viola
Max Fan
Talia Ringer
+ The Multiverse: Logical Modularity for Proof Assistants 2021 Kenji Maillard
Nicolas Margulies
Matthieu Sozeau
Nicolas Tabareau
Éric Tanter
+ Martin-Löf à la Coq 2023 Arthur Adjedj
Meven Lennon-Bertrand
Kenji Maillard
Pierre-Marie Pédrot
Loïc Pujet
+ Automatic and Transparent Transfer of Theorems along Isomorphisms in the Coq Proof Assistant 2015 Théo Zimmermann
Hugo Herbelin
+ Reliably Reproducing Machine-Checked Proofs with the Coq Platform 2022 Karl Palmskog
E. ̃Tassi
Théo Zimmermann
+ PDF Chat Trocq: Proof Transfer for Free, With or Without Univalence 2024 Cyril Cohen
Enzo Crance
Assia Mahboubi
+ PDF Chat Touring the MetaCoq Project (Invited Paper) 2021 Matthieu Sozeau
+ Coqatoo: Generating Natural Language Versions of Coq Proofs 2017 Andrew Bedford
+ PDF Chat Touring the MetaCoq Project (Invited Paper) 2021 Matthieu Sozeau
+ PDF Chat Proust: A Nano Proof Assistant 2016 Prabhakar Ragde
+ From formal proofs to mathematical proofs: a safe, incremental way for building in first-order decision procedures 2008 Frédéric Blanqui
Jean-Pierre Jouannaud
Pierre-Yves Strub
+ MirrorShard: Proof by Computational Reflection with Verified Hints 2013 Gregory Malecha
Adam Chlipala
Thomas Braibant
Patrick Hulin
Edward Z. Yang
+ Comparison of Two Theorem Provers: Isabelle/HOL and Coq 2018 Artem Yushkovskiy
+ A Practical Formalization of Monadic Equational Reasoning in Dependent-type Theory 2023 Reynald Affeldt
Jacques Garrigue
Takafumi Saikawa
+ PDF Chat Verified and Optimized Implementation of Orthologic Proof Search 2025 Simon Guilloud
Clément Pit-Claudel
+ PDF Chat Extending Nunchaku to Dependent Type Theory 2016 Simon Cruanes
Jasmin Christian Blanchette

Works That Cite This (0)

Action Title Year Authors