Existence, uniqueness and regularity of the projection onto differentiable manifolds

Type: Article

Publication Date: 2021-07-01

Citations: 10

DOI: https://doi.org/10.1007/s10455-021-09788-z

Abstract

Abstract We investigate the maximal open domain $${\mathscr {E}}(M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> on which the orthogonal projection map p onto a subset $$M\subseteq {{\mathbb {R}}}^d$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> can be defined and study essential properties of p . We prove that if M is a $$C^1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:math> submanifold of $${{\mathbb {R}}}^d$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:math> satisfying a Lipschitz condition on the tangent spaces, then $${\mathscr {E}}(M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> can be described by a lower semi-continuous function, named frontier function . We show that this frontier function is continuous if M is $$C^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> or if the topological skeleton of $$M^c$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>M</mml:mi> <mml:mi>c</mml:mi> </mml:msup> </mml:math> is closed and we provide an example showing that the frontier function need not be continuous in general. We demonstrate that, for a $$C^k$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>C</mml:mi> <mml:mi>k</mml:mi> </mml:msup> </mml:math> -submanifold M with $$k\ge 2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> , the projection map is $$C^{k-1}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> on $${\mathscr {E}}(M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , and we obtain a differentiation formula for the projection map which is used to discuss boundedness of its higher order differentials on tubular neighborhoods. A sufficient condition for the inclusion $$M\subseteq {\mathscr {E}}(M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>⊆</mml:mo> <mml:mi>E</mml:mi> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is that M is a $$C^1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:math> submanifold whose tangent spaces satisfy a local Lipschitz condition. We prove in a new way that this condition is also necessary. More precisely, if M is a topological submanifold with $$M\subseteq {\mathscr {E}}(M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>⊆</mml:mo> <mml:mi>E</mml:mi> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , then M must be $$C^1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:math> and its tangent spaces satisfy the same local Lipschitz condition. A final section is devoted to highlighting some relations between $${\mathscr {E}}(M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> and the topological skeleton of $$M^c$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>M</mml:mi> <mml:mi>c</mml:mi> </mml:msup> </mml:math> .

Locations

  • Annals of Global Analysis and Geometry - View - PDF
  • PubMed Central - View
  • arXiv (Cornell University) - View - PDF
  • Europe PMC (PubMed Central) - View - PDF
  • PubMed - View

Similar Works

Action Title Year Authors
+ Existence, Uniqueness and Regularity of the Projection onto Differentiable Manifolds 2018 Gunther Leobacher
Alexander Steinicke
+ Existence, Uniqueness and Regularity of the Projection onto Differentiable Manifolds 2018 Gunther Leobacher
Alexander Steinicke
+ PDF Chat Monotone and open mappings on manifolds. I 1975 John Walsh
+ Continuity of metric projection 1985 E. V. Oshman
+ Continuity of the metric projection 1981 L. P. Vlasov
+ Restricted Isometric Projections for Differentiable Manifolds and Applications 2020 Vasile Pop
+ PDF Chat Continuity of Metric Projections 1968 Daniel Wulbert
+ PDF Chat Continuity of metric projections 1968 Daniel Wulbert
+ Continuity of the metric projection on convex sets 1992 L. P. Vlasov
+ PDF Chat Besicovitch–Federer projection theorem for continuously differentiable mappings having constant rank of the Jacobian matrix 2017 Jacek Gałęski
+ ?-Continuity of a metric projection onto convex closed sets 1978 N. V. Nevesenko
+ PDF Chat Monotone and Open Mappings on Manifolds. I 1975 John Walsh
+ Approximation, regularity and positivity preservation on Riemannian manifolds 2023 Stefano Pigola
Daniele Valtorta
Giona Veronelli
+ Differentiability of metric projection onto prox-regular sets 2023
+ Differentiable manifolds 2012 Abhishek Bhattacharya
Rabi Bhattacharya
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mi>K</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>Spaces on the Unit Circle 2014 Jizhen Zhou
+ Introduction to Differentiable Manifolds 2019 António Romano
Mario Mango Furnari
+ PDF Chat None 2002 Nina Lebedeva
+ Smoothness of subspace sections of the unit balls of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e38" altimg="si21.svg"><mml:mrow><mml:mi>C</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>Q</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e51" altimg="si22.svg"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math> 2021 A. R. Alimov
Игорь Германович Царьков
+ Existence of Projections 2018 Kehe Zhu