Quantitative bounds for Gowers uniformity of the Möbius and von Mangoldt functions

Type: Preprint

Publication Date: 2021-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.2107.02158

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Quantitative bounds for Gowers uniformity of the Möbius and von Mangoldt functions 2023 Terence Tao
Joni Teräväinen
+ PDF Chat Quantitative asymptotics for polynomial patterns in the primes 2024 Lilian Matthiesen
Joni Teräväinen
Mengdi Wang
+ PDF Chat Gowers norms of multiplicative functions in progressions on average 2017 Xuancheng Shao
+ A pretentious proof of Linnik's estimate for primes in arithmetic progressions 2022 Stelios Sachpazis
+ Sparse variance for $$k$$ k -free numbers in arithmetic progressions 2014 Fabian Dehnert
+ The error term in counting prime pairs 2023 Leon Chou
Summer Haag
Jake Huryn
Andrew Ledoan
+ PDF Bounds for sets with no polynomial progressions 2020 Sarah Peluse
+ M\"obius orthogonality for the Zeckendorf sum-of-digits function 2017 Michael Drmota
Clemens Müllner
Lukas Spiegelhofer
+ Gowers norms for the Thue-Morse and Rudin-Shapiro sequences 2016 Jakub Konieczny
+ Gowers norms for the Thue-Morse and Rudin-Shapiro sequences 2016 Jakub Konieczny
+ Möbius orthogonality for the Zeckendorf sum-of-digits function 2017 Michael Drmota
Clemens Müllner
Lukas Spiegelhofer
+ PDF Explicit estimates for the error term in the prime number theorem for arithmetic progressions 1984 Kevin S. McCurley
+ PDF Chat LOWER BOUNDS FOR THE VARIANCE OF SEQUENCES IN ARITHMETIC PROGRESSIONS: PRIMES AND DIVISOR FUNCTIONS 2016 Adam J. Harper
K. Soundararajan
+ PDF An inverse theorem for the Gowers $U^{s+1}[N]$-norm 2011 Tamar Ziegler
Terence Tao
Ben Green
+ PDF Chat Discrepancy in modular arithmetic progressions 2022 Jacob Fox
Max Wenqiang Xu
Yunkun Zhou
+ Discrepancy in modular arithmetic progressions 2021 Jacob Fox
Max Wenqiang Xu
Yunkun Zhou
+ PDF Chat On a family of arithmetic series related to the M\"obius function 2024 Gérald Tenenbaum
+ Möbius function and primes: an identity factory with applications 2023 Olivier Ramaré
Sebastian Zuniga Alterman
+ $$\kappa $$ κ -Factor in arithmetic progressions 2015 Olivier Bordellès
+ PDF Prime numbers along Rudin–Shapiro sequences 2015 Christian Mauduit
Joël Rivat