Local well-posedness for the Maxwell-Dirac system in temporal gauge

Type: Article

Publication Date: 2022-01-01

Citations: 1

DOI: https://doi.org/10.3934/dcds.2022008

Abstract

<p style='text-indent:20px;'>We consider the low regularity well-posedness problem for the Maxwell-Dirac system in 3+1 dimensions:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \partial^{\mu} F_{\mu \nu} & = - \langle \psi, \alpha_{\nu} \psi \rangle \ \\ -i \alpha^{\mu} \partial_{\mu} \psi & = A_{\mu} \alpha^{\mu} \psi \, , \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ F_{\mu \nu} = \partial^{\mu} A_{\nu} - \partial^{\nu} A_{\mu} $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M2">\begin{document}$ \alpha^{\mu} $\end{document}</tex-math></inline-formula> are the 4x4 Dirac matrices. We assume the temporal gauge <inline-formula><tex-math id="M3">\begin{document}$ A_0 = 0 $\end{document}</tex-math></inline-formula> and make use of the fact that some of the nonlinearities fulfill a null condition. Because we work in the temporal gauge we also apply a method, which was used by Tao for the Yang-Mills system.</p>

Locations

  • Discrete and Continuous Dynamical Systems - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Local well-posedness for the Maxwell-Dirac system in temporal gauge 2021 Hartmut Pecher
+ PDF Chat Low regularity well-posedness of Hartree type Dirac equations in 2, 3-dimensions 2021 Kiyeon Lee
+ PDF Chat Improved well-posedness results for the Maxwell-Klein-Gordon system in 2D 2021 Hartmut Pecher
+ Null structure and almost optimal local well-posedness of the Maxwell-Dirac system 2010 Piero D始Ancona
Damiano Foschi
Sigmund Selberg
+ Null structure and almost optimal local well-posedness of the Maxwell-Dirac system 2008 Piero D始Ancona
Damiano Foschi
Sigmund Selberg
+ PDF Chat Well-posedness of the Cauchy problem for the Maxwell鈥揇irac system in one space dimension 2019 Mamoru Okamoto
+ Discrete time Maxwell equations 2014 George Jaroszkiewicz
+ Well-posedness and ill-posedness of the Cauchy problem for the Maxwell-Dirac system in $1+1$ space time dimensions 2013 Mamoru Okamoto
+ Global Well-posedness of High Dimensional Maxwell-dirac for Small Critical Data 2020 Cristian Gavrus
Sung鈥怞in Oh
+ Global well-posedness of high dimensional Maxwell-Dirac for small critical data 2016 Cristian Gavrus
Sung鈥怞in Oh
+ PDF Chat Existence criteria of ground state solutions for Schr枚dinger-Poisson systems with a vanishing potential 2020 Sitong Chen
Wen-nian Huang
Xianhua Tang
+ Sharp ill-posedness for the Maxwell-Dirac equations in one space dimension 2019 Sigmund Selberg
Achenef Tesfahun
+ PDF Chat Global Well-Posedness of High Dimensional Maxwell鈥揇irac for Small Critical Data 2020 Cristian Gavrus
Sung鈥怞in Oh
+ Low regularity solutions of the Maxwell-Dirac system 2009 Piero D始Ancona
Damiano Foschi
Sigmund Selberg
+ Global solutions of two coupled Maxwell systems in the temporal gauge 2015 Yuan Jian-jun
+ Local well-posedness and finite time blowup for fourth-order Schr枚dinger equation with complex coefficient 2021 Xuan Liu
Ting Zhang
+ PDF Chat Global solutions of two coupled Maxwell systems in the temporal gauge 2015 Yuan Jian-jun
+ Local well-posedness of the Maxwell鈥揅hern鈥揝imons鈥揌iggs system in the temporal gauge 2014 Yuan Jian-jun
+ Improved well-posedness results for the Maxwell-Klein-Gordon system in 2D 2020 Hartmut Pecher
+ Improved well-posedness results for the Maxwell-Klein-Gordon system in 2D 2020 Hartmut Pecher