Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs

Type: Article

Publication Date: 2021-05-18

Citations: 34

DOI: https://doi.org/10.1609/aaai.v35i5.16563

Abstract

Learning representations for graphs plays a critical role in a wide spectrum of downstream applications. In this paper, we summarize the limitations of the prior works in three folds: representation space, modeling dynamics and modeling uncertainty. To bridge this gap, we propose to learn dynamic graph representations in hyperbolic space, for the first time, which aims to infer stochastic node representations. Working with hyperbolic space, we present a novel Hyperbolic Variational Graph Neural Network, referred to as HVGNN. In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach. To model the uncertainty, we devise a hyperbolic graph variational autoencoder built upon the proposed TGNN to generate stochastic node representations of hyperbolic normal distributions. Furthermore, we introduce a reparameterisable sampling algorithm for the hyperbolic normal distribution to enable the gradient-based learning of HVGNN. Extensive experiments show that HVGNN outperforms state-of-the-art baselines on real-world datasets.

Locations

  • Proceedings of the AAAI Conference on Artificial Intelligence - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs 2021 Li Sun
Zhongbao Zhang
Jiawei Zhang
Feiyang Wang
Hao Peng
Sen Su
Philip S. Yu
+ Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs 2021 Li Sun
Zhongbao Zhang
Jiawei Zhang
Feiyang Wang
Hao Peng
Sen Su
Philip S. Yu
+ Variational Graph Recurrent Neural Networks 2019 Ehsan Hajiramezanali
Arman Hasanzadeh
Nick Duffield
Krishna R. Narayanan
Mingyuan Zhou
Xiaoning Qian
+ DynG2G: An Efficient Stochastic Graph Embedding Method for Temporal Graphs 2021 Mengjia Xu
Apoorva Singh
George Em Karniadakis
+ PDF Chat DynG2G: An Efficient Stochastic Graph Embedding Method for Temporal Graphs 2022 Mengjia Xu
Apoorva Vikram Singh
George Em Karniadakis
+ Learning Dynamic Graph Embeddings with Neural Controlled Differential Equations 2023 Tiexin Qin
Benjamin Walker
Terry Lyons
Hong Yan
Haoliang Li
+ PDF Chat Discrete-time Temporal Network Embedding via Implicit Hierarchical Learning in Hyperbolic Space 2021 Meng‐Lin Yang
Min Zhou
Marcus Kalander
Zengfeng Huang
Irwin King
+ Stochastic Graph Recurrent Neural Network 2020 Tijin Yan
Hongwei Zhang
Zirui Li
Yuanqing Xia
+ Hyperbolic Graph Neural Networks: A Review of Methods and Applications 2022 Meng‐Lin Yang
Min Zhou
Zhihao Li
Jiahong Liu
Lujia Pan
Hui Xiong
Irwin King
+ Dynamic Causal Explanation Based Diffusion-Variational Graph Neural Network for Spatio-temporal Forecasting 2023 Guojun Liang
Prayag Tiwari
SƂawomir Nowaczyk
Stefan Byttner
Fernando Alonso‐Fernandez
+ Continuous Temporal Graph Networks for Event-Based Graph Data 2022 Jin Guo
Zhen Han
Zhou Su
Jiliang Li
Volker Tresp
Yuyi Wang
+ PDF Chat Dynamic Graph Representation Learning with Neural Networks: A Survey 2024 Leshanshui Yang
Clément Chatelain
SĂ©bastien Adam
+ Dynamic Joint Variational Graph Autoencoders 2019 Sedigheh Mahdavi
Shima Khoshraftar
Aijun An
+ Continuous Temporal Graph Networks for Event-Based Graph Data 2022 Jin Guo
Zhen Han
Zhou Su
Jiliang Li
Volker Tresp
Yuyi Wang
+ Dynamic Causal Explanation Based Diffusion-Variational Graph Neural Network for Spatiotemporal Forecasting 2024 Guojun Liang
Prayag Tiwari
SƂawomir Nowaczyk
Stefan Byttner
Fernando Alonso‐Fernandez
+ Temporal Graph Networks for Deep Learning on Dynamic Graphs 2020 Emanuele Rossi
Ben Chamberlain
Fabrizio Frasca
Davide Eynard
Federico Monti
Michael M. Bronstein
+ Hyperbolic Graph Representation Learning: A Tutorial 2022 Min Zhou
Meng‐Lin Yang
Lujia Pan
Irwin King
+ PDF Chat HGWaveNet: A Hyperbolic Graph Neural Network for Temporal Link Prediction 2023 Qijie Bai
Changli Nie
Haiwei Zhang
Dongming Zhao
Xiaojie Yuan
+ HGWaveNet: A Hyperbolic Graph Neural Network for Temporal Link Prediction 2023 Qijie Bai
Changli Nie
Haiwei Zhang
Dongming Zhao
Xiaojie Yuan
+ Hyperbolic Graph Diffusion Model 2023 Lingfeng Wen
Xian Wei

Works That Cite This (14)

Action Title Year Authors
+ PDF Chat LLM4DyG: Can Large Language Models Solve Spatial-Temporal Problems on Dynamic Graphs? 2024 Zeyang Zhang
Xin Wang
Ziwei Zhang
Haoyang Li
Yijian Qin
Wenwu Zhu
+ PDF Chat Out-of-Distribution Generalized Dynamic Graph Neural Network for Human Albumin Prediction 2023 Zeyang Zhang
Ning Lin
Xingwang Li
Xueling Zhu
Fei Teng
Xin Wang
Wenwu Zhu
+ PDF Chat SINCERE: Sequential Interaction Networks representation learning on Co-Evolving RiEmannian manifolds 2023 Junda Ye
Zhongbao Zhang
Li Sun
Yan Yang
Feiyang Wang
Fuxin Ren
+ PDF Chat HGWaveNet: A Hyperbolic Graph Neural Network for Temporal Link Prediction 2023 Qijie Bai
Changli Nie
Haiwei Zhang
Dongming Zhao
Xiaojie Yuan
+ PDF Chat ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network 2021 Xingcheng Fu
Jianxin Li
Jia Wu
Qingyun Sun
Cheng Ji
Senzhang Wang
Jiajun Tan
Hao Peng
Philip S. Yu
+ PDF Chat A Self-Supervised Mixed-Curvature Graph Neural Network 2022 Li Sun
Zhongbao Zhang
Junda Ye
Hao Peng
Jiawei Zhang
Sen Su
Philip S. Yu
+ PDF Chat Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors 2021 Zihan Yan
Li Liu
Xin Li
William K. Cheung
Youmin Zhang
Qun Liu
Guoyin Wang
+ PDF Chat WL-Align: Weisfeiler-Lehman Relabeling for Aligning Users Across Networks via Regularized Representation Learning 2023 Li Liu
Penggang Chen
Xin Li
William K. Cheung
Youmin Zhang
Qun Liu
Guoyin Wang
+ PDF Chat Self-Supervised Continual Graph Learning in Adaptive Riemannian Spaces 2023 Li Sun
Junda Ye
Hao Peng
Feiyang Wang
Philip S. Yu
+ PDF Chat DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for Alleviating Over-squashing 2023 Li Sun
Zhenhao Huang
Hua Wu
Junda Ye
Hao Peng
Zhengtao Yu
Philip S. Yu